Developer Information

Blackmagic
PTZ Control

Camera Control using ATEM, PTZ Control over SDI,
VISCA commands, Controlling Pan, Tilt and Zoom with
Blackmagic 3G-SDI Arduino Shield, Controlling your Arduino

April 2018

.

Contents

Blackmagic PTZ Control

Camera Control using ATEM

PTZ Control over SDI

VISCA commands

Controlling Pan, Tilt and Zoom with Blackmagic 3G-SDI Arduino Shield

Controlling your Arduino

Camera Control using ATEM

All ATEM switchers with a remote port support VISCA camera control via RS-422. VISCA
commands are defined by controlling the cameras via ATEM external hardware panels, such
as ATEM 1 M/E Advanced Panel and ATEM Broadcast Panels.

Refer to the ATEM Production Studio Switchers and ATEM Television Studio Switchers manuals
for more information.

ool e® 0 @

0000
Ry
T
20¢

Receive Receive Transmit Transmit Ground
) () -)) Pins
8 3 2 7 1,4,6,9

RS-422 PTZ pin connections.

PTZ Control over SDI

ATEM external hardware panels, such as ATEM 1 M/E Advanced Panel and ATEM Broadcast
Panels can control PTZ camera heads via your switcher’s SDI program return output. By
connecting the program return feed from your switcher to a Blackmagic Micro Studio Camera,
then connecting the SDI output from the camera’s expansion cable to your PTZ head, you can
control the head via the SDI signal.

For more information on PTZ control using a Blackmagic Micro Studio Camera refer to the
Blackmagic Studio Cameras manual. This manual can be downloaded from the Blackmagic
Design support center at www.blackmagicdesign.com/support

Blackmagic Micro Studio Camera 4K supports PTZ output in the form of VISCA commands,
which can be sent to a compatible motorized head. By using a Blackmagic 3G-SDI Arduino
Shield, you can send pan, tilt and zoom commands over SDI to your Blackmagic Micro
Studio Camera 4K. Your camera will then translate these SDI camera control protocol
commands into the VISCA protocol, and send them to a compatible motorized head via the
9-pin connector on the expansion cable labelled ‘PTZ control’.

This means that you can use one SDI cable in a live production environment, to send camera
control commands to remotely control any setting in the camera, as well as send PTZ commands to
a compatible motorized head to control pan and tilt. The pan and tilt commands will be sent by your
Blackmagic Micro Studio Camera 4K to the motorized head, whereas lens related commands such
as iris, focus and zoom commands will be sent to the active lens that is connected to the camera.

Camera Control using ATEM

The commands that the Micro Studio Camera 4K can accept over SDI are:

= Lens Zoom = Memory Set

= Lens Focus = Memory Recall
= Lens lIris = Memory Reset
= Pan Tilt

These commands are referenced in the ‘Blackmagic SDI Control Protocol’ in the
‘Blackmagic Camera Control’ developer information document which can be downloaded at
www.blackmagicdesign.com/developer/

Most PTZ heads support the setting and recalling of their positions but it is a good idea to
check which commands are supported by each PTZ head manufacturer.

The commands that are output through the ‘PTZ control’ connector in the form of VISCA
commands are:
= CAM_Memory = Pan-tiltDrive

VISCA commands

Up 8x 0106 01VV WW 03 01 FF
Down 8x 0106 01VV WW 03 02 FF
Left 8x 0106 01VV WW 0103 FF
Right 8x 0106 01VV WW 02 03 FF VV:
Pan speed 01to 18
UpLeft 8x 0106 01VV WW 0101FF
ww:
UpRight 8x 0106 01VV WW 02 01FF Tilt speed O1to 17
YYYY:
PantiltDrive DownlLeft 8x 0106 01 VV WW 0102 FF Pan position F725 to 08DB
DownRight 8x 0106 01VV WW 02 02 FF (center 0000)
722Z:
Stop 8x 0106 01VV WW 03 03 FF Tilt position FE70 to 04BO
(image flip: OFF) (center 0000)
AbsolutePosition 8x 0106 02 VV'WW i iti
OY OY OY OY 0Z 0Z 0Z 0Z FF Tilt position FB50 to 0190
(image flip: ON) (center 0000)
RelativePosition 8x 0106 03 VV WW
elativerosttio 0Y OY OY OY 0Z 0Z 0Z 0Z FF
Home 0Y OY OY OY 0Z 0Z 0Z OZ FF
Reset 8x 0106 05 FF
Reset 8x 0104 3F 00 Op FF p:
Memory number (=0 to 5)
CAM_Memory Set 8x 0104 3F 010p FF
Corresponds to 1to 6 on the
Recall 8x 0104 3F 02 Op FF remote commander.

Compatible motorized heads include the following:

= KXWell KT-PH180BMD
= PTZOptics PT-Broadcaster
= RUSHWORKS PTX Model 1

VISCA commands 4

Controlling Pan, Tilt and Zoom with
Blackmagic 3G-SDI Arduino Shield

Using the Blackmagic 3G-SDI Arduino Shield with an Arduino board, a joystick and a switch,
you can control a PTZ head via Blackmagic Micro Studio Camera 4K.

Connecting your Blackmagic Micro Studio Camera 4K to the Blackmagic Design 3G-SDI Shield
Connect the Blackmagic Design 3G-SDI Shield to an Arduino board.

Connect the custom shield to the Arduino board.

Attach the SDI output connector from the shield to the SDI input on your
Blackmagic Micro Studio Camera 4K and set the camera as camera number 1.

Connect the joystick and button to the shield

The joystick is mapped as follows:
= X axis adjusts the PTZ head’s pan.
= Y axis adjusts the PTZ head’s tilt.

= Pressing the joystick button tells the PTZ head to store the current X,
Y position in memory.

= Pressing the switch recalls the stored position.

NOTE The ATEM SDK supports the Blackmagic SDI Camera Control Protocol, and is an
alternative to using a Blackmagic 3G-SDI Arduino Shield for control.

Refer to the ATEM Switchers SDK manual for more information. The ATEM Switchers
SDK manual can be downloaded at www.blackmagicdesign.com/support.

Controlling Pan, Tilt and Zoom with Blackmagic 3G-SDI Arduino Shield 5

Controlling your Arduino

The following sketch demonstrates a simple example of using a joystick and button with
an Arduino board and the Blackmagic 3G-SDI Arduino Shield, to control a PTZ head via a
Blackmagic Micro Studio Camera 4K.

PTZ Example §
#include <EMDSDIControl.h»

#/ Hardware pin mappings

const int JoystickxPin
wonst int JjoystickYPin
const int huttan1Pin
const int buttenzPin
const int button3Pin

AL;
55
6;
7

// EBlackmogic Design SDI control shield globals
const int shieldAddress = Bx6E;
BMU sUltameralontrol 120 sditameralontrol(shieldAddress);

/¢ Button debouncing globals

unsigned long laststapleButtonTime[32];
int rowButtonlevels[32];
int stahl eluttonl evel s[32];

float panTiltvalues[] = {1.0, 1.0};

void setup() {
7/ ConfFigure digital inputs

pinMoge(buttonlPin » INPUT PULLUPY;
pirdodeCbuttonZPin . TNPUT_PULLUPY;
pirvade(BUttONAPin L INPUT_PULLUP);

4/ Set up the BMD SDI control library

sdiCameratontrol .begingy;

7/ The shield supports up to 4A0KHz, use Foster

£F T2C speed to reduce latency
Wire. setClock(400000) ;

/#/ Engble both tally and control overrides

sdiCameraControl . sellver:

t

deCtrue);

unid laop() {

if (getButtonStableEdge(buttonlPin) — true) {

1nts t memoryValues[] = {
1, // Store memory
B, /7 First slot
i
sdiCameralontrol .writelommand Int&(

1,

11,

1,

memoryvalues

1f (getbuttonstablecdgetbuttonsiind - true) {

inté_t memoryvaluesf] - {
7, 7/ Recall memory
@, /7 Second slot

sdiCameracantral . wel tal omeand i nes(
1,

11,

1,

@,
memoryValues

n

Controlling your Arduino

6

PTZ Example §

if (yetButtonStobleEdgecbutton3Pin) — true) {
intA_t memoryValues[] - {
9, // Reset memory
8, // First slot

i
sdiCameraControl.writeComundIntE(
11,
1,
o,
memoryValues

}
float punTiltValues[] = {0.0, 9.0};
int currentJoystickY = getloystickAxisPercent(joystickyPin);

if (currentloystickY = 15 || currentloystickY « -15) {
paniiltvalues[¥] - (floot)currentloystickY / 109.0;

int currentloystickX = getJoystickaxisPercent{joystickaPind;
if (currentloystickX » 15 || currentloystickX « -15) {
paniiltvalues[1] - (floot)currentloystickk / 109.9;

2

sdiCameraControl .writeCommandF Lxcdl6(

1, // Destination: Camera 1

11, /7 Lategory: External Uevice
@ #/ Param; Pan Tilt Speed
a, 74 Dperation Set Ahsolute,
panTiltvalues £ values

1

ink getJoystickduisPercent(int analogPin) {
A7 Reads the joystick axis on the given analog pin as o [-100 - 109] scaled value

int rawhnalogValue - analngReadCanalagPin);
int scaledAnalogvalue = mop{rowanalogvalue, @, 1823, -189, 1097,

/¢ Lonsider values close to zero as zero, so that when the joystick is
/7 centered it reports zerc even if it is slightly mis-aligned
if (uhs(scaledAnalogValue) < 18) {

scaledAnalogvalue -

return scaledanaloegvaluc:
buol getButtonStubleEdge(int digitelPiny {
/F Detects debounced edges (1.2 presses and releases) of a button

bool previouslevel = stobleButtonLevels[digitalPin];
banl newl evel - getButtonStahlelevel (digitallin);

return previouslevel I- newlevel;
int getButtonStahlelevel (int digitalPin) {
#f Reads a digital pin ond filters it, returning the stable button position

int pinLevel - d
unsigned long currentTime = mi

tallead(digitaliind;
[Sle H

If the button is ropidly changing Cbouncing) during a press, keep
4 resetting the lost stoble time count
iF (pinlevel |- rasfuttonl avels[digitalPin]) {
lostStableButtonTime[digitalPin] = currentTime;
rawdut tonLevels[digitalPin] = pinLevel;

/7 Once the hutton has heen stahle for

1f ((currentTime - lastStableButtonTime[digitalPin]y = 207 {
stobleButtonLevels[digitulPin] = pinLevel;

1

return stableRuttonl evel s[digitalPin];

Controlling your Arduino 7

	Camera Control using ATEM
	PTZ Control over SDI
	VISCA commands
	Controlling Pan, Tilt and Zoom with Blackmagic 3G-SDI Arduino Shield
	Controlling your Arduino

