June 2023 .
Fuse Plugin Guide and Reference Blackmagic

Fusion SDK

4 4 B » P D

O - E

TNy Merget « m Povion
|]
» FPolntLight1_1 et
Yy v m >
» Merge3D2 o v v 1 £
/ e ColorCorrect. !
y Pointlight1_1.. m v L 1
b Mergeldl t
[\ v
Transform?
i B W SoftGlowl_1_...
. 'y
> -
v L4 v v v
» Renderer3D_. m b Mergeld m » ColorCorrect.. m > Mergeld 4

Leading the Creative Video Revolution

http://www.blackmagicdesign.com

About this Document

This document is divided into two sections: The Fuse Guide and the Fuse Reference. The first section,
the Fuse Guide, explains the fuse application programming interface (API). Fuses are like plugins that
can be developed easily without the need of compilers and development environments. Fuses can
go beyond Macros, and their source code can easily be converted into G+ source for the Fusion SDK.
Resolve and Fusion has a built in compiler and will compile on the fly. Access to GPU processing

can easily be done in a Fuse as well as utilizing optimized core processing functions already built

into Fusion

This guide contains information on how to get started, how the APl is laid out to represent the
application model, and how to deal with it in practice. The first section refers to example fuses that
ship with this guide The second section, the Fuse Reference, assumes you have an understanding of
the programming concepts and the fundamentals of the first section. The Fuse Reference describes
the common AP, its objects, members, arguments and usage.

Target Audience

This document is intended for developers, technical directors, and users knowledgeable in
programming. It was by no means written to teach programming concepts and does not act as a
reference for programming languages. Please refer to Lua.org for Further language references.

If you are capable of editing Macros in a text editor and adding Scripting functions to customize

tooling, then Fuses extend further with more functionality and lower level capabilities.

Requirements

In order to follow this guide, you will need to have a copy of Blackmagic Design Fusion or Resolve
installed. The source code of both fuse languages needs to be stored as plain text, which can be
written in any non-formatting text processor like Notepad or TextEdit. It is recommended to make
use of a dedicated code editor to benefit from syntax highlighting and language-specific features,
like ScITE.

http://Lua.org
https://www.scintilla.org/SciTE.html

Fuse Plugin Guide

About Fuse Plugins ... 7
Installation ... 7
RESOIVE. ... 7
FUSION o 8
Overview Guide....................ccccooeveennnnn, 8
About the Lua Language ... 8
Types of Fuse Plugins ... 9
Image BasiCS..........cc.cccooooiiiiii, 9
IMAages ..o 9
COlOT 10
Channels. ... 10
Canvas COolOr ..., 10
Image DOmain ... 11
Metadata. ... 11
Fuse Plugin Programing..................... 11
Editing and Loading............cccccoocoocooiiiie, 11
Setting Code Dev Editor...............cccoooinn. 11
Naming ConventionsS............cccocoooioiviein, 12
Variables. ..., 12
Console - Printand Debug..........o 13
Other Programing Notes.............ccccccoo..... 13
Example 1 - Overviewof a Fuse ... 13
FuRegisterClass Function..........c...o... 14
UI Controls - Create Function ... 14
Process Event Function ..., 15
Example2 - UI Controls..................... 17
SHAGIS oo, 17
Buttons, Check Boxes and Lists 18
ON SCreeN ..o 19

Color Controls ..o, 20
Gradient Color ... 21
Organize, Tabs, Nests ..., 22
Image INPULS ... 23
Notify Change ..., 23

Example 3 - Internal Image

Processing Functions ... 24
Color MatriX ... 24
Color FUNCLIONS ..o, 25
Color SPaCe ..o 25
Clear and FillImage............cccocooiviiiiii, 25
Channel Operations...........ccccoioiiiiiin, 26
Channel Booleans..............ccooii, 26
Transform ..., 26
CrOP e 27
RESIZE..... oo 27
MEFGE ... 27
OMerge OXMerge ..., 28
BIUr GIOW........ooiiiiiii, 28
Example 4 - Multi Pixel Processing........... 29
Creating Pixel Functions ..., 29
ProCess. ..o, 30
Example 5 - Shapes, Lines, Text............ 31
Example 6 - Text and Strings............... 33
UL Create ... 33
ProCeSS. ..o, 34
Function Creation - Text Rendering 35
Example 7 - Sampling ... 37
Process Scatter ..., 37
Process Sample ..., 38

Fusion SDK Contents

Fuse Reference

Creation ..., 40
FuRegisterClass() ..., 40
Create ... 42
PrOCESS. ... 42
NotifyChanged ..o, 42
ONAAATOFIOW ..o, 43
INPUL 44
UL . 48
Add Controls - AddInput..........cccooooioin, 48
ButtonControl.............ccoooooiiii 51
CheckboxControl ... 51
ColorControl ... 52
ComboControl..........coooii 54
FileControl ..., 55
FontFileControl. ..., 56
GradientControl ..., 56
LabelControl ..., 57
MultiButtonControl ..., 58
OffsetControl ..., 59
RangeControl ... 60
Thumbwheel ScrewControl ..., 61
SliderControl...........ccocoooooiiiii 62
TextEditControl...........cccoooioiiii 62
OnScreen UTWidgets............ccccocoooiii, 63
OULPUL. ..o, 68
ProCess ... 68
Image Processing Function ... 68
BlendOf ... 69
BIUK o 69
ChannelOpOf ..., 71
COPYOT e 73
CSCONVEIT ... 73
ErodeDilate............ccocoooiiioiii 74
Fill o 75
GaAMIMA o 76
GaAIN o 76

GetCanvasColor. ..., 77
GetPiXel......cooooi 77
IMage . 78
MErge ..o, 84
MergeOTf ..., 86
MultiProcessPixels ..., 88
OMEIge ..o, 90
OXMEIge ..o, 90
RESIZE......oii 91
ReCyCleSAT ..o 92
SamplePixelB ... 92
SamplePixelD ... 93
SamplePixelW. ... 93
SampleAreaB. ... 94
SampleAreaD ..., 94
SampleAreaW ..., 95
SatUrate ..o 96
SetCanvasColor ..., 97
SetPiXel ..., 97
Transform ... 98
USESAT .o 99
Request ... 100
Domain of Definition ... 100
PiXel ... 101
ColorMatrixFull ..., 102
Using the ColorMatrixX ..., 102
Drawing, Text, Shapes ... 106
Shapes Creation.......................... 106
Shape ..o 106
AddRectangle............ 106
MOVETO ..ot 107
LINETO ..o 107
BezierTO ..o 107
CONICTO .o, 107
ClOSE oo 108

Fusion SDK Contents

Text Shape ... 108

GetCharacterShape ..., 108
TextStyleFont ... 108
TextStyleFontMetrics ... 109
CharacterWidth ... 109
CharacterKerning ..., 109
OutlineOfShape........ccccoviiiiii, 109
ImageChannel ... 110
Styles. ..., 111
FIIStYle oo 111
SetFillStyle ... 11
ShapeFill ... 112
PUtToImage. ... 112
ChannelStyle ... 112
COlOT .ot 113
BIUITYPE ..o, 113
SoftnessX SoftnessY ..., 113
SoftnessSGIOW ... 114
SoftnessBlend............co 114
Shape Transforms ... 114
MatriX4 114
Matrix Operations ..., 115
Identity ..o, 115
RotX RotY ROtZ ..., 115
ROTAXIS ..o 116
ROtAte ..., 116
MOVE ..o 116
SCAl .o, 117
SREAY. ..o, 117
Project . . 117
Perspective..........cooooi 117
TransformOfShape ..., 118

View LUT Plugin ... 118
ViewLut Creation ... 118
FuRegisterClass() ..., 118
ViewLut UL 119
Create() .o 119
ViewWLUut ProCess............cccooooeiiiie, 120
SetupShadeNode() ..., 120
SetupParams ... 121
ViewLut Example ... 122
FuRegisterClass() ..., 122
ViewShadeNode ... 123
The Shader String. ... 123
ShadePixel ... 124
MetaData ... 125
Viewing Metadata........................... 125
Metadata and Fuses........................ 125
Supported File Types ... 125
List of known Metadata ... 126
Metadata Functions....................... 128
Readstring ... 129
WIIteSTriNg oo 130
DCTL Processingc..cccccoeveverinnnnnn, 130
DCTL Introduction ... 130
Kernels. ... 130
Math Functions..............ooioii, 132
define_kernel_iterators_xy(X, y)............. 135
User Defined Functions........................ 136
ProCess ... 137
Process Introduction............o. 137

Fusion SDK Contents

®

Fuse
Plugin Guide

About Fuse Plugins

— Fuses are like plugins that are hosted by Resolve-Fusion engine and Fusion Studio can be
developed easily in a Text editor without the need of compilers and development environments.

— Builtin UI toolbox, with many different controllers, onscreen widgets are available to use.

— Development is rapid as Fuses can be developed and reloaded on the fly without restarting
Resolve and Fusion. Test, Edit, and Reload the updated source code will compile on the fly and run.

— Thereis also a builtin core of image processing functions like Blur, Merge, Color operations and
Image operation that utilize optimized core processing and GPU processes.

— Fuses can be multithreaded and GPU processing like DCTL can be used.

— Fuse source code uses Lua, which is a C like programming language, and their source code can
easily be converted into G++ source for the Fusion SDK.

— The JustIinTime (JIT) flavor of Lua that is utilized in Fusion which compiles on the

fly for performance.

Installation

There are 7 Template Example Fuses installed in the Developer section of Resolve and Fusion with
inline documentation (comments). This section will offer an overview of basic Fuse programming and

refer to these examples for more in depth study.

First copy these fuses from the developer directory and paste into the these directories

— macOS: ~/Library/Application Support/Blackmagic Design/DaVinci Resolve/Support/Fusion/Fuses
— Windows:C:\ProgramData\Blackmagic Design\DaVinci Resolve\Support\Fusion\Fuses

— Linux:/local/share/DaVinciResolve/Fusion/Fuses

Fuse Plugin Guide

— macO0S: ~/Library/Application Support/Blackmagic Design/Fusion/Fuses
— Windows:C:\ProgramData\Blackmagic Design\Fusion\Fuses

— Linux: ~/fusion/BlackmagicDesign/Fusion/Fuses

Restart Resolve and Fusion. This will need to be done to add a new Fuse to the list. Once added, the
process of editing, developing can be done on the fly without restarting the applications.

Overview Guide

This Guide section is used with the series of Template Example Fuse Plugins supplied, these have
comments inline to explain functionality. These show the functional building blocks and setups to
creating custom Fuse plugins. This guide will explain each template Fuse, and the Reference section
has further detail of each function.

Starting with background information primer, you can follow along with the Fuse plugins loaded in the
Fusion page, loaded in a Text editor, and this.

About the Lua Language

Lua is a powerful, efficient, lightweight, embedded scripting language built into Resolve and Fusion
it is used for Scripting and hosting Python scripting as well as Fuse image processing plugins.

It supports procedural programming, object-oriented programming, functional programming,
data-driven programming, and data description.

Lua combines simple procedural syntax with powerful data description constructs based on
associative arrays and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode
with a register-based virtual machine, and has automatic memory management with incremental

garbage collection, making it ideal for configuration, scripting, and rapid prototyping.

— Lua supports an almost conventional set of statements, similar to those in C. This set includes
assignments, control structures, function calls, and variable declarations.

— Control structures if, else, while, and repeat have the usual meaning and familiar syntax

— The for statement has two forms: one numeric and one generic. The numeric for loop
repeats a block of code while a control variable runs through an arithmetic progression.
Also do and break loops.

— Expressions: numbers and literal strings. Variables. Function definitions. Function calls.
Table constructors. Both function calls and vararg expressions can result in multiple values.

— Arithmetic operators: the binary + (addition), - (subtraction), * (multiplication), / (division), %
(modulo), and A (exponentiation); and unary - (negation). If the operands are numbers, or strings
that can be converted to numbers, then all operations have the usual meaning.

— The relational operators are, == (equal), ~= (not equal), < (less than), > (greater than), <= (less than
or equal), >= (greater than or equal). These operators always result in false or true.

— Math operators like Sin, Cos, Absolute, Log, Power, and more.

— 1/0 and OS level file open close read write support and control.

Fuse Plugin Guide

Fuses use Lua for the Fuse language and further language documentation can be found on the
Lua site and the Lualit site.

Types of Fuse Plugins

Fuse plugins can be Image Processing and Metadata Processing or Modifiers or View LUT Plugins.

Image Processing Fuse plugins look like regular tools in Resolve and Fusion and can use all the same
UI controls in the Inspector tool controls, and onscreen crosshairs and widgets are also available for

use. Metadata processing is part of this Fuse type.

Modifier Plugins affect Number inputs and show up in the Modifier list. These are used instead of
animation splines to control numbers of a slider or the center of a merge as an example.

View Lut plugins are used to modify the image before being displayed, like linear to rec709 type color
conversion or for utility like zebra striping to show out of range data. These are explained in the View
Lut Plugin Reference.

Image Basics

Fuses do image processing and use internal functions in the Fusion engine to access images and
pixels. Ul tools and Onscreen controls are built in and can be animated just like normal tools.

Images are 2D arrays of pixels with 2 axis, X and Y. Coordinates are normalized, bottom left of the
image is (0,0) the center of the image is (0.5,0.5) and top right is (1,1). Images can also be accessed as

pixels as well.

Aspect Ratio is supported for nonsquare pixels.

Proxy sizing is also a part of the process with sizes of the original image and proxy size available to
the plugin.

Plxels are accessed directly in images in the X and Y directions from 0 to Width -1 for the X axis and 0
to Height -1 axis for the Y axis, the Bottom Left is pixel (0, 0) and Top Right is (Width-1. Height -1)

Fuse Plugin Guide

https://www.lua.org/manual/5.1/
https://luajit.org/luajit.html

Coloris in RGB space, Alpha matte channel is always part of the image. There are also extended
deep pixel channels like Z-Buffer, Vectors, Disparity and more as well. Color of pixels are in floating
point numbers from 0 (black) to 1 (white), these values can be higher than 1 like in HDR and can also
be negative.

RGB(1,0,0) RGB(0,1,0)

RGB(0,0,1) RGB(0,0,0)

Images can have AOV channels beyond Red Green Blue, the channels available are:

R, G,B,A Red, Green, Blue and Alpha channels

BgR, BgG, BgB, BgA Background Red, Green and Blue channels

z Z Buffer Channel

Coverage Z buffer coverage channel

ObjectID, MaterialID The ObjectID and MateriallD channels

U Vv,w UV and W texture map coordinates channels

NX, NY, NZ XYZ normal channels

VectorX, VectorY The forward X and Y motion vector channels to the
next frame

BackVectorX, BackVectorY Back X and Y motion vectors to the previous frame

DisparityX, DisparityY Per pixel Disparity position between 2 images,
normally stereo images

PositionX, PositionY, PositionZ World position channels

Fusion engine supports infinite canvas for images, which is that image extends in all directions, the
region beyond the bounds of the image data is set using the canvas color.

Fuse Plugin Guide

10

The Domain of Definition, abbreviated to DoD, refers to a rectangular region that defines what part of
the image actually contains image data, this area can be outside of the viewing area and can be used
to limit the area of processing to the relevant area to speed performance.

Image metadata is supported and can be processed by Fuse plugins. It is a set of variables that are
attached to an image and are passed alongside pixel data through the comp. Cameras store metadata
inside the files like time code location, color data and lens data.

Fuse Plugin Programing

Fuse Plugins are generally composed of 3 classes

— FuRegisterClass function, to register and name your plugin, to show up in the tool list of the

Fusion page and set the menu category. Brief description and link to help can also be set.

— Ul controls are set in the Create Function. These are all animateable and are available in the
Inspector tool control area and on screen.

— Process event is the heart of the plugin wear Image Processing code and algorithms are executed.
There is a library of builtin image tools and functions to speed development.

Fuse Plugins are compiled on the fly or just in time compiled. Reloading a Fuse will cause a load of the
source code into cache and recompile.

Edit and Reload buttons are found at the top of the Inspector Tool Controls.

Inspector

Ex2_Controls2

In Fusion Settings or Preferences the Code Editing Application Editing application and location can be
set. This will allow any text editor to be associated to the Fuse files for editing and development.

Script

Fuse Plugin Guide

1

There are 2 names, a label that is displayed in menus and Inspector Tool controls and internal names
registering the plugin and tool controls internally, often the same name or similar abbreviation.

For example in creation register base class :

FuRegisterClass("ExampleColorCorrector"”, CT_Tool,

REGS_Name = "Exl BrightContrast",

The label displayed will be "ExampleColorCorrector" and internally this tool is referred to
as "Exl BrightContrast"

In the UI create section control inputs are in the form "Label", "name".

InBright = self:AddInput("Brightness", "Bright"

In this example "Brightness" will be displayed on the Tool control and internally "Bright" will be
used in the setup inside Fusion.

Note that a Variable number called InBright will be passed to the Process function of the plugin.

IMPORTANT The name should use only characters between A-Z, a-z, 0-9 and the underscore.
Do Not use spaces in the naming and should not start with a number or use other
special characters.

Common names

UI Tool Controls can have the same name and allow for compatibility of passing the same variables to
each tool in a comp. If a Copy of a Tool node on a comp is "Paste Setting" onto another tool then
common UI control values and animation will transfer to the same controls.

The common UI tool control names include Blend, Gain, Saturation, Brightness, Gamma for slider type

controls and Angle, Center, Size, Pivot for image transform operations.

In C language variables are declared by int, uint, float, double etc, in Lua language this happens based
on first use of the variable. To declare variables use the term local.

In this example local bright = InBright:GetValue(req).Value The declared variable is a number.

This is number local r = 0 and could be Integer or floating point,Setting the variable to local

g = 0.0 will setit to float.
This is a pointer to animage local img = InImage:GetValue(req)

The following is a table of strings

local apply operators = { "Over", "In", "Held Out", "Atop", "XOr", }

Fuse Plugin Guide

12

Resolve and Fusion have a Scripting Console which will show debug information and can also output

text via the Print function.

The Print function can be formatted to combine strings and numbers and used for debug checking

when code development is in process.

— \\ Double backslashes are used for Directories, to not confuse with other operations

— Comments are marked with a -- for a single line and --[[open bracket comment]]-- closed

Example 1 — Overview of a Fuse

This section will use Example1_BrightContrast.fuse, found in the Tools menu Fuses/Examples.

This outlines a basic Fuse and the 3 Function to create a tool node. The Register to name it, the Create

for the UI controls, and Process for the image calculations.

Ex1_BrightContrast1 Inspecior

Ex1 BrightContrastl

This is a simple color corrector that has 3 slider controls for Brightness, Contrast and Saturation.

Fuse Plugin Guide

The FuRegisterClass call describes the Fuse in a way that Fusion can recognize. This section tells
Fusion the tool Name, location Tool menu, description and abbreviation.

This section should contain a single function call to FuRegisterClass(). The FuRegisterClass function
requires three arguments. The first sets the tools name, the second sets the tools type, as defined in
Fusion's internal registry, and the last argument is a table containing attributes which define the tools
name, icon and other particulars.

This is @ minimum to register a Fuse.

FuRegisterClass(ExampleColorCorrector", CT Tool, {
REGS_Category = "Fuses\\Examples",
REGS OpIconString = EI1BC",

REGS_OpDescription = "Examplel, using the functions of Color
Matrix",,

})-- End of RegisterClass

More options and settings are available.

FuRegisterClass("ExampleColorCorrector", CT Tool, ({
REGS_Name = "Exl BrightContrast",
REGS Category = "Fuses\\Examples",
REGS_OpIconString = "E1BC",
REGS OpDescription = "Examplel, using the functions of Color Matrix",
REGS_HelpTopic = "Example Location of Help", --This can be a URL
REGS_URL = "www.blackmagicdesign.com",
REG_OpNoMask = true,
REG_NoBlendCtrls = true,
REG_NoObjMatCtrls = true,
REG_NoMotionBlurCtrls = true,
REG_NoBlendCtrls = false,
REG_Fuse_NoEdit = false,
REG_Fuse_NoReload
REG Version = 1,

false,

}) -- End of RegisterClass

This is where parameter controls are defined, there are different types like sliders and onscreen
crosshairs. The create function is run when the Fuse tool is added to the composition, or a
composition containing that fuse tool is loaded. It describes the controls presented by the tools
control window, and the inputs and outputs shown on the tools tile in the flow. The Create function
takes no arguments.

It presents 3 sliders named ‘Brightness’, ‘Contrast’, ‘Saturation’ in the Inspector Tool control area, and
the tool has one image input and one image output.

Fuse Plugin Guide

14

function Create()

InBright = self:AddInput("Brightness","Brightness", { -- UI Label,
Internal Ref

LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_MaxScale = 1.0,
INP_MinScale = -1.0,
INP_Default = 0.0,
9]
InContrast = self:AddInput('Contrast”, "Contrast", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_MaxScale = 1.0,
INP_MinScale = -1.0,
INP Default = 0.0,
9]

InSaturation = self:AddInput('Saturation", "Saturation", {

LINKID DataType = "Number",

INPID InputControl = "SliderControl",
INP_MaxScale = 5.0,

INP_MinScale = 0.0,

INP_Default = 1.0,
ICD _Center = 1,
H

InImage = self:AddInput("Input”, "Input", {
LINKID DataType = "Image",
LINK_Main = 1,

}

OutImage = self:AddOutput('Output"”, "Output", {
LINKID DataType = "Image",
LINK_Main = 1,
}

end -- end of Create()

The Process Event function is where the image processing operations occur and is executed whenever
Fusion asks the fuse tool to render a frame. Fusion’s renderer will pass the Process function a single
argument, an object called the Request. This argument contains all the information the tool needs

to know about the current render environment. The image.at the current time and the Controls like
sliders at the current time.

The following Process example, will get an image and assign it to a Variable 'img’, it also gets three
values from the sliders in the Inspector Tool controls and assigns them to variables ‘bright’, ‘contrast’,

Fuse Plugin Guide

'sat’. It creates local variables 'r'/g’'b’/a’ and also creates a Color Matrix ‘'m’. Internal functions are used

to manip

ulate the matrix and then runs the function ApplyMatrixOf to the image, outputting to a

destination image, then finally sets the resulting image to the fuse tools output.

function Process(req)

end

-- Get values from the UI Tools

local img = InImage:GetValue(req)

local bright = InBright:GetValue(req).Value

local contrast = InContrast:GetValue(req).Value + 1
local sat = InSaturation:GetValue(req).Value

—-- Define set of variables

local r

local g
local b

a
0
0
0
0

local a

if bright == 0 and sat == 1.0 and contrast == 1.0 then
-- no change, go ahead and bypass this tool

OutImage:Set(req, img)

else
-— create a color matrix
local m = ColorMatrixFull()
—--Apply Brightness to the matrix via Offset function
r = bright
g = bright
b = bright
m:0ffset(r, g, b, a)
--Apply Contrast by offsetting the color to the midpoint 0.5
r = contrast
g = contrast
b= contrast
a =1
m:0ffset(-0.5, -0.5, -0.5, -0.5)
m:Scale(r, g, b, a)
m:0ffset (0.5, 0.5, 0.5, 0.5)
--Apply Saturation by converting the Color Matrix to YUV and
Scaling the Chroma UV channels
m:RGBtoYUV()
m:Scale(l, sat, sat, 1)
m:YUVtoRGB()
--Apply the Color Matrix to the image img to output image out
out = img:ApplyMatrixOf(m, {})
--Output the image
OutImage:Set(req, out)

end

Fuse Plugin Guide

16

Example 2 — Ul Controls

This section will use Example2_UIControls.fuse, found in the Tools menu Fuses/Examples.

This Fuse presents the UI toolbox of controls and demonstrates features of the UI system. The code is
commented for further information.

Ex2_Controts]

There are a rich assortment of Ul controls available in the interface, showing in the Inspector Tool
Control Area and on screen. This Fuse provides templates to all the controls as well as UI controls for
Nesting control groups, Creating Tabs, and dynamically showing and hiding Ul elements.

Sliders are used to provide parameter inputs, and produce a number.

Sliders can be integer or floating point, can also be a fixed range or unlimited range, can be scaled or
fixed scale, can have fixed limits and can also operate non linearly.

—-- Slider Control returns a number

InSliderB = self:AddInput("Slider Non Linear", "SliderN", { -- UI Label,
Internal Ref
LINKID DataType = "Number", -- returns a number
INPID InputControl = "SliderControl", -- Type of Control
INP_MaxScale = 5.0, —- Sets the default Maximum scale of the slider

Fuse Plugin Guide

17

INP_MinScale = 0.0, —-Sets the default Minimum scale for the slider

ICD Center = 1, -— Sets the default value to the center of the
slider for Non Linear operation

INP_Default = 1.0, -- Sets default value for the slider
INP_MinAllowed = 0, —-- Sets the default Minimum value of the slider

INP_MaxAllowed =10,-- Sets the default Maximum value of the slider
b

—-- Thumbwheel Screw Control is an Infinite slider, used for angle
controls, where fine control over values is needed and infinite numbers
can be set.

InScrewAngle = self:AddInput("Infinite Slider", "ScrewControl", {
LINKID DataType = "Number",
INPID_ InputControl = "ScrewControl",

INP_MinScale = 0.0,

INP_MaxScale = 100.0,

INP_Default = 0,

h

Thumbwheel Screw controls have infinite range yet still will give fine control, like for rotation type

operations Range controls will result in High and Low values being returned.

Buttons are moment activation and do not change state, used for triggering events Check Boxes
switch between states, returning 0 or 1.

—--Dropdown Lists are Combo Controls that will display and choose a
number of items. This is 17 items, and will return numbers 0 to 16

InDropList = self:AddInput("Drop Down List", "DropList", { --UI Label,
Internal Ref

LINKID DataType = "Number", -- returns a number

INPID InputControl = "ComboControl", -- Type of Control

INP_Default = 0.0,

INP_ Integer = true,
CCS_AddString = "Normal", }, -- labels for each option in the list
CCS_Addstring = "Screen", },
CCS_AddString = "Dissolve", },
CCS_Addstring = "Multiply", },
CCS_AddString = "Overlay", },
CCS_Addstring = "Soft Light", },

P N S S

Fuse Plugin Guide

18

{ CCS_Addstring = "Hard Light", },
{ CCS_AddString = "Color Dodge", },
{ CCS_AddsString = "Color Burn", },
{ CCS_AddString = "Darken", },

{ CCS_AddString = "Lighten", },

{ CCS_Addstring = "Difference", },
{ CCS_AddString = "Exclusion", },

{ CCS_Addstring = "Hue", },

{ CCS_AddString = "Saturation", },
{ CCS_Addstring = "Color", 1},

{ CCS_AddString = "Luminosity", },

1))

Drop Down Combo Control lists give unlimited selection of items from a list. Returns O for first, 1
for the second Multibutton is similar to Drop Lists, each option is displayed on a button to make the
options visible.

These Point controls have 2 values for X and Y. On screen crosshairs, points and crosses can be
defined, along with default position.

Controls

-17.7

0.5701003

-- Point controls are 2D used for on screen manipulation returning
2 values X and Y

InCenter = self:AddInput("Center", "Center", { --UI Label, Internal Ref

LINKID DataType = "Point", -- Retrurns 2 values X and Y
INPID InputControl = "OffsetControl", -- Type of Control
INPID PreviewControl = "CrosshairControl", -- Display Control

INP_DefaultX = 0.8,

INP_DefaultY = 0.5,

H

Rectangle and Angle controls can be linked to Sliders and Thumbwheel Screw controls.

Fuse Plugin Guide

19

InSize = self:AddInput('Size", "Size", {

LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_Default = 1.0,

h

InSize:SetAttrs({
INPID PreviewControl = "RectangleControl",
RCP_Center = InCenter,
RCP_Angle = InAngle,
RCD LockAspect = 1.0,
H

The onscreen widgets can be linked together, to have angle and rectangle controls associated with a

Point Control. Selection priority can be set to make it easy to select overlapping controls.

The color Controls can be set up in a number of different ways.

Fuse Plugin Guide

Color control can show or hide the Color Wheel, and also set default color. Color picker is built into the
color controls and these can pick RGBA or any auxiliary channel present.

-- Color Control/Picker RGB sliders withe the Color Wheel/Swatch is

hidden
InRed = self:AddInput("Red", "Red", { -- UI Label, Internal Ref
ICS_Name = "Color",
LINKID DataType = "Number",
INPID InputControl = "ColorControl", -- Type of Control
INP_Default = 1.0,
INP_MaxScale = a0,
CLRC_ShowWheel = false,
IC_ControlGroup = 2, -- Groups Controls together. Make Group
number it 2
IC_ControlID = 0,
1))
InGreen = self:AddInput("Green", "Green", { -- UI Label, Internal Ref
LINKID DataType = "Number",
INPID InputControl = "ColorControl", -- Type of Control
INP_Default = 0.9,
IC_ControlGroup = 2, -- Put this into a Group and number it 2
IC_ControlID =1,
1))
InBlue = self:AddInput("Blue", "Blue", {--UI Label, Internal Ref
LINKID DataType = "Number",
INPID InputControl = "ColorControl", -- Type of Control
INP_Default = 0.6,
IC_ControlGroup = 2, —-- Put this into a Group and number it 2
IC_ControlID =22j;
)

Gradient controls is a 1D array of color values that are used for color ramps. This has the color controls
and picker builtin.

—- Gradient Color control has a 1D color ramp. Default Gradient is 2
colors black to white. Use OnAddToFlow to set default colors

InGradient = self:AddInput("Gradient", "Gradient", { --UI Label, Internal Ref

LINKID DataType = "Gradient", -- Returns a Gradient 1D LUT
INPID InputControl = "GradientControl", -- Type of Control
INP_DelayDefault = true,
9]

InInterpolation = self:AddInput('Gradient Method", "GradientMethod", {
LINKID DataType = "FulD", -- Returns a FulID to the Color system
INPID InputControl = "MultiButtonIDControl", -- Type of Control
{ MBTNC_AddButton = "RGB", MBTNCID AddID = "RGB", },

Fuse Plugin Guide

{ MBTNC_AddButton "HLS", MBTNCID AddID = "HLS", },

{ MBTNC_AddButton "HSV", MBTNCID AddID = "HSV", },

"LAB", },

{ MBTNC_ AddButton "LAB", MBTNCID_ AddID
MBTNC_StretchToFit = true,
INP_DoNotifyChanged = true,

INPID DefaultID = "RGB",

9]

Tabs Appear across the top of the Inspector Tool Control area and allow the organisation of the UI Tool
control inputs.

Ex2_Controls1

The creation of a Tab is a simple 1 line, and all controls following will be on this Tab page

-—- Control pages are new Tabs across the top of the tool controls
in the Inspector tool control area

self:AddControlPage("Color Controls") -- Name the new Tab Control page

Nests allow the creation of groups of controls under a single heading. Nests can be twirled open
or closed.

Nests are defined by a single line BeginControlNest and ended by the EndControlNest call

self:BeginControlNest("Color Picker", "ColorPicker", true); -- Control
Nests group controls with a togglable collapse/expand function

-— More controls

self:EndControlNest()

Fuse Plugin Guide

22

A tool node can have a number of image inputs or outputs.

v L J
> Ex2_UIl_Controls1

Y

Image Inputs can be defined easily shown here in this code snippet.

--Image, Masks Inputs
InImage = self:AddInput("Background", "Background", {
LINKID DataType = "Image",
LINK Main = 1,
9]
InImage2 = self:AddInput('Image2", "Image2", {
LINKID DataType = "Image",
LINK Main = 2,
INP_Required = false,
})
-- Create an output image

OutImage = self:AddOutput("Output”, "Output", {

LINKID DataType = "Image',
LINK_ Main = 1,
})

The NotifyChanged event function is executed any time a control is changed on a tool. It executes
before the Process event function. Typically the NotifyChanged event is used to adjust the values of
controls before they are locked for rendering.

For example, the NotifyChanged function may be used to show and hide controls, or modify the name
of a Ul Label on a control in this example.

-- Notify Changed: Hide or Show controls and change Labels when options
are selected

function NotifyChanged(inp, param, time)

-- If Notify Change check box changes then rename Control names and
Un/Hide sliders

if inp == InNotify then

local locked = (param.Value > 0.5)

Fuse Plugin Guide

23

if locked then
InSliderH:SetAttrs({ LINKS Name = "Slider Hide/Show" })
InSliderH:SetAttrs({ IC Visible = true })
InNotify:SetAttrs({ LINKS Name = "Notify Change Showing" })

else
InSliderH:SetAttrs({ LINKS Name = "Slider Hide/Show Hidden" })
InSliderH:SetAttrs({ IC Visible = false })
InNotify:SetAttrs({ LINKS Name = "Notify Change Hidden" })
end
end
end

Example 3 - Internal Image
Processing Functions

This section will use Example3_ImageProcess.fuse and Exmp3_MultiPixelProcess.fuse.

Ther Fusion engine has built in image processing functions, these are highly optimized and make it
easy to do common operations like color, blur, merge and channel operations. Further info can be

found in the Process Reference.

This has a dropdown list of Image processing functions with prefixed variables to show a result.

Each option in the Process Function is self contained and also for Channel operations will have

multiple examples.

Color Matrix uses a 4x4 matrix like 3D to manipulate color of an image, This can be used for linear
operations like Brightness, Contrast, Gain and RGB-YUV conversion.

Fuse Plugin Guide

24

—_——kkkkkkkhkkk Color Matrix*********

local cm = ColorMatrixFull() -- Create a color matrix

--Apply Brightness to the matrix via Offset function

cm:0ffset(0.1, 0.1, 0.1, 0) -- RGBA values adding 0.1 to RGB and 0 to Alpha
--Scale is the same as Gain which will multiply the Matrix by 1.1
cm:Scale(1.1, 1.1, 1.1, 1.1) -- Multiplies RGBA by 1.1 like Gain

--Applies the Color Matrix (cm) on image (img) outputting to another
image (out)

out = img:ApplyMatrixOf(cm, {})

Color Functions will apply basic color math operations to an image like Gain(multiply), Gamma
(power), Saturate (color +/- luminance), these can apply to RGBA extcepth Saturate.

__**********Color Functions************

out = img:Copy() -- copy input image to out image
out:Gain(l.1 , 1.2 , 1.3, 1)--RGBA

out:Gamma(l.5, 1.5, 1.5, 1)--RGBA
out:Saturate(1l.5,1.5,1.5)--RGB

Color Space conversions can be applied to and from images, the RGB channels will store the converted
image in the RGB channels, for example, HLS will be assigned as R =H, G=L, B=S.

——*k*kkxkk*xx**Color Space COnversionk***xk*xk*x

—--Image:CSConvert(<from>, <to>), with <from> and <to> coming from "RGB",
"HLS", "YUV", "YIQ", "CMY", "HSV", "XYz", "LAB".

out:CSConvert ("RGB", "YUV") --RGB to YUV where Y is in R, U is in G, V
is in B

out:Gamma(l.0, 0.9, 1.1, 1) --Example: Apply some Gamma to UV channels

out:CSConvert ("YUV", "RGB") -- Convert YUV to RGB

Clearing and Filling images with a set color can be done with Clear and Fill functions.

——k*kkkx*k*kx***Clear and Fill with color***x**xx*x*xx*
out:Clear() -- Clears image set all channels to zero

out:Fill(Pixel({R = 1.0, G = 0.8, B = 0.25, A = 1.0})) —-- Fill image with
color

Fuse Plugin Guide

Channel operations are the arithmetic operations Add, Subtract, Multiply, and Divide. Values are
applied to channels in the images.

——*k*k%k*k*xx*k***Color Channel Math Operations***x***&*kxx

—- Channel Math operations, apply a value to image(img) to output (out)
"Add", Multiply, Subtract, Divide

out = img:ChannelOpOf("Add", nil, { R = 0.1, G = 0.1, B = 0.1, A = 0.0})

out = out:ChannelOpOf("Multiply", nil, { R

1.1, G = 1.1, B = 1.1, A =

1.0})

out = out:ChannelOpOf("Subtract", nil, { R = 0.2, G = 0.2, B = 0.2, A =
0.0})

out = out:ChannelOpOf("Divide", nil, { R = 0.8, G = 0.8, B = 0.8, A =
1.0})

Channel operations can also do more with 2 images, Foreground, Background and apply pixel for

pixel operations Copy, Add, Multiply, Subtract, Divide, Threshold, And, Or, Xor, Negative, Difference,
Signed Add.

—-- Channel Boolean Math operations, pixel to pixel operations apply a
value to image(img) to output (out)

-- Copy, Add, Multiply, Subtract, Divide, Threshold, And, Or, Xor,
Negative, Difference, Signed Add

—-- Multiply each pixel with a pixel from another image

out = img:ChannelOpOf("Multiply", fg, {R = "fg.R", G = "fg.G", B = "fg.B",
A = "fg.A"})

—-- Add each pixel with a pixel from another image

out = img:ChannelOpOf("Add", fg, {R = "fg.G", G = "fg.R", B = "fg.B", A =
"£g.A"})

—— Threshold low-high

out = img:ChannelOpOf("Threshold", fg,{R="bg.R", G="bg.G", B="bg.B",
A="bg.A"}, 0.1, 0.8)

-- Copy fg channels to output

out = img:ChannelOpOf("Copy", fg, {R = "fg.R", G = "fg.G", B = "fg.B", A
“fg.A"})

--Copy one channel to another, fg Red and bg Green and Blue

out = img:ChannelOpOf("Copy", fg, {R = "fg.R", G = "bg.G", B = "bg.B", A =

"fg.A"})

Transforming images, X&Y size, Angle, X&Y offset and pivot, as well as stamp or tiling
rendering method.

——kk*kkxkkkx**Transform Imager***k**xk**

out = img:Transform(nil, {

Fuse Plugin Guide

26

XF XOffset = 0.65, --center.X,

XF _YOoffset = 0.6, --center.Y,

XF XAxis = 0.5, --pivot.X,

XF _YAxis = 0.5, --pivot.Y,

XF XSize = 0.2, --sizex,

XF_YSize = 0.4, --sizey,

XF Angle = 30.0, --angle,

XF_EdgeMode = 1, --edge _modes Black=0, Wrap(tile)=1, Duplicate edges=2
}

Cropping or Cutting out a subsection of an image. Offsets are defined in pixels, and the destination
image defines the size. Can also to the reverse and used to paste a smaller image into a larger image.

__***********Crop Image***********

—--Original image (img) Output image (out). Offset in Pixels 0,0 is
bottom left. Negative and out of bounds values are allowed

img:Crop(out, {CROP_XOffset = 100, CROP_YOffset = 50}) -- Offset in pixels

Images can be resized to different sizes, defined by the X&Y size of the given output image, and
different resize filter methods can be chosen.

——kkkkkkkkk**Resize Imagerrrkk*xxkk*

--Filter Methods: Nearest, Box, Linear, Quadratic, Cubic, Catmull-
Rom, Gaussian, Mitchell, Lanczos, Sinc, Bessel

img:Resize(rszimg, {RSZ_Filter = "Cubic", })

Merge will overlay one image onto another, and has transform control over the foreground image as
well as multiple apply modes for combining images and blending modes.

——**xkxxk*x*x*Merge Foreground image over Background imagex**xk*xxk*x
out:Merge(foreG, { --foreG image will be on top of out image

MO ApplyMode = apply modes[applymode],

MO_ApplyOperator = apply operators[applyoperator],

MO _XOffset = 0.75, --center.X,

MO_YOffset = 0.75, --center.V,

MO_XAxis= 0.5,

MO_YAxis =0.5,

MO_XSize = 0.5 ,--xsize,

MO YSize = 0.5, --ysize,

MO_Angle = 45, --angle,

MO_FgAddSub = additive,

Fuse Plugin Guide

MO_BgAddSub = additive,
MO_BurnIn = 0.0, --burn,
MO _FgRedGain = 1.0,
MO_FgGreenGain = 1.0,
MO_FgBlueGain = 1.0,
MO_FgAlphaGain = 1.0,
MO_Invert = 1,

MO Doz = false,

H

OMerge and OXMerge a Simple Additive or Subtractive Merge with Pixel XYOffsets. This can be used

to reverse Crop Image.

-Merge will overlay the Foreground(

(out)
out:0Merge(foreG, 100, 50) -- Pixel integer offsets
out:0XMerge(foreG, 100, 50) -- Pixel integer offsets

over the copy Background image

Blurring of images with different filter methods, color scale (gain) controls, blending and glow via the

Normalize value.

__***********Blur Glow***********

img:Blur(out, { -- Blur will blur img into the result out

BLUR Type = 4,
BLUR_Red = true ,
BLUR_Green = true,
BLUR_Blue = true,
BLUR Alpha = true,
BLUR_ XSize = 10/720,
BLUR_YSize = 10/720,
BLUR_Blend = 0.5,
BLUR_Normalize = 0.5,
BLUR_ Passes = 0.0,
BLUR_RedScale = 1.0,
BLUR GreenScale = 1.0,
BLUR_BlueScale = 1.0,
BLUR_AlphaScale = 1.0,
b

Fuse Plugin Guide

Example 4 — Multi Pixel Processing

Functions can be defined for pixel by pixel processing with 2 images and any image channel can be
coded and multi threaded executed, see Example4_MultiPixelProcess.fuse.

All channel can be accessed, the names are : R, G, B, A, BgR, BgG, BgB, BgA, Z, Coverage, ObjectID,
MateriallD, U, V, W, NX, NY, NZ, PositionX, PositionY, PositionZ, VectorX, VectorY, BackVectorX,
BackVectorY, DisparityX, DisparityY.

Functions have to be defined before the Process in the code because there is no header files.

Functions are defined to access 2 or more images on a pixel by pixel basis. p1 is the pixel of image
1, p2 is pixels from image 2. This Example uses a Function table to define 5 different functions and a
simple drop down menu to select which function is processing.

—--Function table for operations pl is a pixel from imagel and p2 is a
pixel from image2

op_funcs =
{
[1] = function(x,y,pl,p2) -- min
pl.R = math.min(pl.R, p2.R)
pl.G = math.min(pl.G, p2.G)
pl.B = math.min(pl.B, p2.B)
pl.A = math.min(pl.A, p2.3)
return pl
end,
[2] = function(x,y,pl,p2) -- max
pl.R = math.max(pl.R, p2.R)
pl.G = math.max(pl.G, p2.G)
pl.B = math.max(pl.B, p2.B)
pl.A = math.max(pl.A, p2.A)
return pl
end,
[3] = function(x,y,pl,p2) -- add
pl.R = pl.R + p2.R
pl.G = pl.G + p2.G
pl.B = pl.B + p2.B
pl.A = pl.A + p2.A
return pl
end,
[4] = function(x,y,pl,p2)

—-—- Variables. any number of variables can be named and passed to the
function

pl.R = gain * (pl.R - p2.R)

pl.G = pl.G - p2.G - bright
pl.B = var C * (pl.B - p2.B)
pl.A = pl.A - p2.A

Fuse Plugin Guide

29

return pl

end,

—-- Copy Img2 RGB to Background and Normals Aux channels of imgl

—-—- This is the all the channels available

- RI GI BI Ar BgRI BgG,

V, W, NX, NY, NZ

BgB, BgA, Z, Coverage, ObjectID, MateriallD, U,

-- VectorX, VectorY, BackVectorX, BackVectorY, DisparityX, Disparityy,
PositionX, PositionY, PositionZ

[5] = function(x,y,pl,p2)

pl.R = pl.R
pl.G = pl.G
pl.B = pl.B

pl.A = pl.A

pl.BgR = p2.R
pl.BgG = p2.G

pl.BgB = p2.B

pl.BgA = p2.A

return pl

end,

This Process function shows expanded Image creation to define extra channels so there are 8

channels RGBA and Bg-RGBA.

MultiProcessPixels will use the defined function and apply it to the images.

NOTE That any number variables using any name can be passed to the functions, these do

not have to be declared. In this case 3 variables gain, bright, var_C {gain = 2.0, bright=-0.3,

var_C=1.5} are passed to the function.

function Process(req)

local imgl = InImagel:GetValue(req)

local img2 = InImage2:GetValue(req)

local operation = InOperation:GetValue(req).Value+l

if img2 == nil then

img2 = imgl
end
--This creates an image
local imgattrs = {
IMG_Document =

{ IMG_Channel

{ IMG_Channel
{ IMG_Channel
{ IMG_Channel

with 4 extra channels for function 5

self.Comp,
"Red", },
"Green", },
"Blue", },
"Alpha", 1},

Fuse Plugin Guide

30

IMG_Channel
IMG_Channel

"BgRed", },

"BgGreen", },

IMG_Channel "BgBlue", },

N e)

IMG_Channel
IMG_Width = imgl.Width,

"BgAlpha", },

IMG_Height = imgl.Height,
IMG_XScale = imgl.XAspect,
IMG_YScale = imgl.YAspect,
IMAT OriginalWidth = imgl.realwidth,
IMAT OriginalHeight = imgl.realheight,
IMG_Quality = not req:IsQuick(),
IMG_ MotionBlurQuality = not req:IsNoMotionBlur(),
}
if not req:IsStampOnly() then
imgattrs.IMG_ProxyScale = 1
end
if SourceDepth ~= 0 then
imgattrs.IMG Depth = SourceDepth
end

local out = Image(imgattrs)

local func = op_funcs[operation] -- get pointer to the function
from the table

-— Must have a valid operation function, and images must be same
dimensions

if func and (imgl.Width == img2.Width) and (imgl.Height == img2.Height)
then out = Image({IMG_Like = imgl})

out:MultiProcessPixels(nil, {gain = 2.0, bright=-0.3, var_cC=1.5}, 0,0,
imgl.Width, imgl.Height, imgl, img2, func)

end
OutImage:Set(req, out)

end

Example 5 — Shapes, Lines, Text

This section refers to Example5_Shapes.fuse for defining and rendering of shapes, setting the color
and styles. Example4_Text.fuse has info on text rendering.

It works similar to a 3D render context and there are 5 objects in creating and renderings a shape.

A Shape is a linked list of lines or curves and defines as an outline or solid. FillStyle defines what style
the shape will be filled with. ChannelStyle sets the color and blur, glow of the shape. Image channel
defines an image or frame buffer to render shapes into it. Matrices are used to transform the shapes
before rendering them into an image.

This sets up the context and creates a shape.

Fuse Plugin Guide

local ic = ImageChannel(out, 8) -- Image Channel

local fs = FillStyle() -- Fill Style Object

local cs = ChannelStyle() -- Channel Style

local mat = Matrix4() -- Matrix to transform the shapes

local sh = Shape()

-- Shape made of a group of line segments
sh:MoveTo(0.078125, 0.1484375)
sh:LineTo(0.1748046875, -0.0078125)
sh:LineTo(0.177734375, -0.0732421875)
sh:LineTo(0.1455078125, -0.1435546875)
sh:LineTo(0.104777151878219, -0.160285078121503)
sh:LineTo(0.06640625, -0.150390625)
sh:LineTo(0.0068359375, -0.09375)
sh:LineTo(-0.05078125, -0.07421875)
sh:LineTo(-0.154296875, -0.1142578125)
sh:LineTo(-0.1767578125, -0.0986328125)
sh:LineTo(-0.1904296875, 0.0185546875)
sh:LineTo(-0.11328125, 0.0615234375)
sh:LineTo(-0.072265625, 0.1162109375)
sh:LineTo(-0.0546875, 0.1025390625)
sh:LineTo(-0.01953125, 0.1396484375)
sh:LineTo(0.0263671875, 0.1328125)
sh:LineTo(0.017578125, 0.1015625)
sh:LineTo(0.0625, 0.07421875)

The matrix is scaled, moved and rotated, the order of these operations is important, This example

Scales first, moves the shape and rotates the entire shape.

The second section sets the color and look, applies the matrix to the shape and renders it to an image

using ShapeFill and PutToImage.

mat:Identity() -- Set the matrix to zero

mat:Scale(0.7, 0.7, 0.7) --Scale

mat:Move(0.25, 0.4, 0) -- Translate the Shape

mat:RotZ(-rotation) -- Rotate, Note the order of Matrix operations
cs.Color = Pixel{R=r , G=g , B=b, A = 1} -- Set the Color
ic:SetStyleFill(fs) -- Set the Drawing application styles

sh = sh:TransformOfShape(mat) -- Transform Shape using the Matrix

ic:ShapeFill(sh) --Apply Shape to the Image Channel

ic:PutToImage("CM Merge", cs) --Render to the image

Fuse Plugin Guide

32

Example 6 — Text and Strings

This section will use Example6_Text.fuse. Text, Fonts, String handling and formatting, Ul are all
described in this Fuse that will give an text input Ul widget and varour controls over the text.

System calls are used to query the OS for a fonts list to populate a list, and get font data.

There are 3 Ul input controls for text inputs, and will have a data type of text.
TextEditControl is a text input Ul box that can be typed into as well as cut and paste.

This Fuse also shows creating a separate Function that can be called from Process.

function Create()

InText = self:AddInput("Styled Text", "StyledText", {
LINKID DataType = "Text",
INPID InputControl = "TextEditControl",
TEC_Lines = 3, -- How many lines high is the Input.

9]

InFont = self:AddInput('Font", "Font", {
LINKID DataType = "Text",
INPID InputControl = "FontFileControl",
IC_ControlGroup = 2,
IC_ControlID = O,
INP Level = 1,
INP_DoNotifyChanged = true,

}

InFontStyle = self:AddInput("Style", "Style", {
LINKID DataType = "Text",
INPID InputControl = "FontFileControl",

IC_ControlGroup = 2,

IC_ControlID = 1,

INP Level = 1,

INP_DoNotifyChanged = true,
})

Fuse Plugin Guide

FontFileControl Ul list controls will dynamically adjust list items and are used to get installed font
lists from the OS. This can also be used to get the weight formatting of the font like Regular, Bold,
and Light.

The Process.Function in this Fuse will get 11 variables from the UI, Text strings, fonts and metrics,
color and on screen location. If no font list is populated it will force the scanning of the Font list
from the OS.

function Process(req)
local img = InImage:GetValue(req)
local font = InFont:GetValue(req).Value
local style = InFontStyle:GetValue(req).Value
local out = img:CopyOf()

local text = InText:GetValue(req).Value
local size = InSize:GetValue(req).Value
local center = InPosition:GetValue(req)

local justify= InJustify:GetValue(req).Value

local r = InR:GetValue(req).Value
local g = InG:GetValue(req).Value
local b = InB:GetValue(req).Value
local a = InA:GetValue(req).Value

local cx = center.X
local cy = center.Y * (out.Height * out.YScale) / (out.Width * out.XScale)

local quality = 32

-- if the FontManager list is empty, scan the font list

—-— If the UI has never been shown, as would always be the case on a
render node,

-- nothing will scan the font list for available fonts. So we check for
that here,

-- and force a scan if needed.
if not next(FontManager:GetFontList()) then
FontManager:ScanDir()

end

if req:IsQuick() then
quality =1

end

-- the drawstring function is doing all the heavy lifting

drawstring(out, font, style, size, justify, quality, cx, cy,
Pixel{R=r,G=g,B=b,A=a}, text)

OutImage:Set(req, out)

end

Fuse Plugin Guide

34

Fuses can have defined Functions that can be called from the other main Process function, These
need to be defined before Process, so it knows to reference this function as there is no header file.

This code will Render Text to an image using the shape rendering functions built into the Fusion

engine core. See the next section for further explanation.

function drawstring(img, font, style, size, justify, quality, x, vy,
colour, text)

local ic = ImageChannel(img, quality)
FillStyle()

local fs

local cs = ChannelStyle()

cs.Color = colour

ic:SetStyleFill(fs)

-- get the fonts metrics
local font = TextStyleFont(font, style)
local tfm = TextStyleFontMetrics(font)

—-— This is the distance between this line and the next one.

local line height=(tfm.TextAscent + tfm.TextDescent + tfm.
TextExternalLeading) *10 * size

local x_move = 0

local mat = Matrix4()

mat:Scale(l.0/tfm.Scale, 1.0/tfm.Scale, 1.0)

mat:Scale(size, size, 1)

-- set the initial baseline position of the text cursor

local sh, ch, prevch

local shape = Shape()

mat:Move(x, y, 0)

-- split the text into separate lines

for line in string.gmatch(text, "%C+") do

-- First pass, work out what the total width of this line is
going to be

local line_width = 0
for i=1,#line do

ch = line:sub(i,i):byte()
-— is this ignoring kerning?

line width = line width + tfm:CharacterWidth(ch)*10*size

end

Fuse Plugin Guide

35

-- Now work out our initial cursor position, based on the

justification

-- 0 = left justify,

-- 1 = centered

-- 2 = right justify

if justify == 0 then
--mat:Move(0, 0, 0)

elseif justify == 1 then
mat:Move(-line width/2, 0, 0)

elseif justify == 2 then
mat:Move(-line width, 0, 0)

end

—-— Second pass, now we assemble the actual shape

for i=1,#line do

end

prevch = ch

-- get the character, or glyph
ch = line:sub(i,i):byte()

— first we want to know what the width of the character is,
-- so we know where to start drawing this next character
—— not really sure why we multiply this by 10, we just do :-)

local cw = tfm:CharacterWidth(ch)*10*size

-- if there is a previous character, we need to get
the kerning

-- between the current character and the last one.

if prevch then
x_offset = tfm:CharacterKerning(prevch, ch)*10*size
X _move = X _move + x_ offset
mat:Move(x_offset, 0, 0)

end

-- move the cursor to the center of the character

mat:Move(cw/2, 0, 0)

-- I think this renders the shape we are interested in
sh
sh

tfm:GetCharacterShape(ch, false)

sh:TransformOfShape(mat)
-- move the text cursor to the end of the glyph.
mat:Move(cw/2, 0, 0)

X_move = x_move + Cw

shape:AddShape(sh)

Fuse Plugin Guide

36

-- line end, move the cursor back to the start
if justify == 0 then

mat:Move(-x_move, -line_ height, 0)
elseif justify == 1 then

mat:Move(-x_move/2, -line height, 0)

elseif justify == 2 then
mat:Move(0, -line_ height, 0)
end
X_move = 0
end
ic:ShapeFill(shape)

ic:PutToImage('CM_ Merge", cs)

end

Example 7 - Sampling

This section will use Example7_Sampling.fuse. Getting and Setting pixels and filtered sampling at
any location is outlined in this example showing spatial warping of images and non linear transforms

of pixels.

NOTE Images iterate for output image, so that every pixel can be filled.

The Scatter function iterates through each output pixel and gets a source pixel based on the value red
and blue channels shifting the position. The color channels return a float value between 0 and 1 and
the Amplitude will control the strength of the effect. The output image is called avg.

print ("Scatter")
for y=0,img.Height-1 do
for x=0,img.Width-1 do
img:GetPixel(x,y, sp)
Xt = x - Amp * 5 * (sp.R - 0.5)
yt =y - Amp * 5 * (sp.B - 0.5)
if xt < 0 then
xt =0 end
if xt > img.Width-1 then
xt =img.Width-1 end
if yt < 0 then
yt =0 end

Fuse Plugin Guide

37

end

end

if yt > img.Height-1 then

yt =img.Height-1 end

img:GetPixel(xt,yt, sp)

dp.R
dp.G

dp.B
dp.A

sp.R
sp.G
sp.B
Sp.A

avg:SetPixel(x,y, dp)

The Sample function iterates through each output pixel and gets a source pixel based on the Sine

math function shifting the position. The output image is called avg

print ("Sample")

for y=0,img.Height-1 do

end

for x=0,img.Width-1 do
X - (Amp * math.sin((y * XF) + OffS))
y - (Amp * math.sin((x * YF) + OffS))

end

Xt
yt
if
if
if
if

xt

xt

yt
yt
img:SamplePixelB(xt,yt, sp)

dp.R
dp.G

dp.B
dp.A

0 then xt =0 end

<
> img.Width-1 then xt =img.Width-1 end
< 0 then yt =0 end

>

img.Height-1 then yt =img.Height-1 end

sp.-R
sp.G
sp.B
Sp.A

avg:SetPixel(x,y, dp)

Fuse Plugin Guide

®

Fuse
Reference

Creation

Summary

The FuRegisterClass function is executed when Fusion first loads the Fuse tool or ScriptViewShader.
The arguments to this function provide Fusion with the information needed to properly present the
tool for use by the artist. Fusion must be restarted before edits made to this function will take effect.

The FuRegisterClass function is required for all Fuse tools and ScriptViewShaders, and generally
appears as the first few lines of the Fuse script.

Usage

FuRegisterClass(string name, enum ClassType, table attributes)

Returns

This event function does not return a value.

Arguments
name(string, required)
The name argument is a unique identifier that is used to identify the plugin to Fusion. It is also used as

the base for the tool's default name. For example, the first instance a ScriptPlugin with the name '‘Bob’
would be added to the flow as Bob1.

NOTE The name should use only characters between A-Z, 0-9 and the underscore, and
should not start with a number. For example, a Fuse named sample-tool would appear to
work, but would actually create compositions which can not be reopened.

ClassType (enum, required)

The ClassType is a predefined variable which identifies the type of Fuse for Fusion. Some valid values
for the ClassType are:

— CT_ Tool
— CT_Modifier
— CT_ViewLUTPlugin

attributes (table, required)

The attributes table defines all the remaining options needed to define a Fusion tool. There

are a wide variety of possible attributes, and not all are required. The following table lists the
most common attributes, and their expected values. A more comprehensive list can be found at
FuRegisterClass Attributes.

Fuse Reference

40

REGS_Category

Required. A string value which sets the category a tool will appear in. For example, REGS_Category =
"script" will place the tool in the Scripts category of the tool menu. If the category does not exist,

it will be created to hold the tool. Nested Categories can be defined using a \ character as a seperator.
For example, REGS_Category = "Script\\Color" will create a Color category under the Script
category of the tool menu. Remember to use \\instead of \ in a regular string, as \ is considered an

escape character unless the [[]] syntax is used.

REGS_OplIconString

Required. A string value that defines the abbreviation of the tools name. This is used in the toolbar
menu and by the bins.

REGS_OpDescription

Required. A short description of the tool, used in the various parts of the Fusion interface.

REGS_Name
Optional. Only needed if the ViewShader's displayed name is different to its unique ID.

Examples

The following shows the FuRegisterClass function used to create a Tool called Ex2_Controls, In the
Tools menu Fuses\Examples

FuRegisterClass("ExampleControls", CT Tool, ({
REGS_Name = "Ex2 Controls",
REGS_Category = "Fuses\\Examples",
REGS_OpIconString = "E2C",

REGS_OpDescription = "Example, showing the various Controls in Fusion",

REGS_HelpTopic = "Example Location of Help", -- This can be a URL
REGS_URL = "www.blackmagicdesign.com",

REGS_IconID = "Icons.Tools.Icons.Example", -- This can be inline as
an array

REG_OpNoMask = false, -- Mask Input shows and will mask the
output image

REG_NoBlendCtrls = true, -- This will allow whether this tool
can Blend

REG_NoObjMatCtrls = true, --Set this to allow masking from the
Object mattes

REG_NoMotionBlurCtrls = true, -- Set whether Motion blur will work
with this tool

REG_NoBlendCtrls = false, -- This will allow whether this tool can
Blend

REG _Fuse NoEdit = false, -- To not allow editing of the Fuse set
to true

REG_Fuse_NoReload = false, -- To no allow reloading of the Fuse

set to true
REG_Version = 1,

}

Fuse Reference

41

Summary

The Create event function is executed whenever the Fuse tool is added to the composition. It should
contain all of the information required to draw the tools inputs and outputs, and to display the tools
controls in the control window.

The Create function does not require or use any arguments and does not return a value.
While all Fuse tools MUST provide a Create event function, that function can be empty.

Usage
Create()

Arguments

None

Examples

All Fuse tools have a Create function. See the Example_Fuses page.

Summary

The Process function is called whenever the Fuse Plugin tool needs to do some work by processing
the image. This can occur during the final render, or during an interactive render. The Request object
passed to the Process function as its only argument contains information about the current render
settings, including current time, proxy and motion blur settings.

The process function does not return a value.
All Fuse tools require a Process event function.

Usage

Process(object Request)

Arguments

Request (object, required) The request object is automatically passed to the Process function when
Fusion invokes the Process event. This object contains all the relevant information about the current
render request, including proxy and motion blur settings, and the current state of all tools.

In Fuse tools released by eyeon, the Request object is usually assigned to the variable 'req’.

Examples

See Fuse Examples for further information.

Summary

The NotifyChanged event function is executed any time a control is changed on a tool. It executes
before the Process event function. Typically the NotifyChanged event is used to adjust the values of
controls before they are locked for rendering.

Fuse Reference

42

For example, the NotifyChanged function may check to see if a Blur tools Lock X/Y Strength checkbox
has been selected. If it has, it could take care of hiding or disabling the Y strength slider, and setting
the Y strength to match the X strength.

Usage

NotifyChanged(object input, object parameter, number time)

Arguments

input (Input object)

The Input object whose control has changed

parameter (Parameter object)

The new Parameter object produced by the control (may be nil, datatype depends on the Input)

time (number)

The current frame number, as shown on the comp's timeline.

Example

function NotifyChanged(inp, param, time)

if inp == InNotify then -- If Notify Change check box is changed,
then rename the Control names and Un/
Hide sliders

local locked = (param.Value > 0.5)

if locked then
InSliderH:SetAttrs({ LINKS Name = "Slider Hide/Show" })
InSliderH:SetAttrs({ IC Visible = true })
InNotify:SetAttrs({ LINKS Name = "Notify Change

Showing" })
else
InSliderH:SetAttrs({ LINKS Name = "Slider Hide/Show
Hidden" })
InSliderH:SetAttrs({ IC Visible = false })
InNotify:SetAttrs({ LINKS Name = "Notify Change Hidden"
})
end
end
end
Summary

The OnAddToFlow event function is executed when the tool is added to the flow. It executes before
the Process event function. Typically the OnAddToFlow event is used to set the values of controls.

Usage
OnAddToFlow()

Arguments

None

Fuse Reference

43

Example

This Example shows setting colors in a Color Gradient control

—— OnAddToFlow can be used to set parameters and other processing
functions when the Tool is add to a comp

function OnAddToFlow()
local grad = Gradient()
if InNewTool:GetSource(0).Value >= 0.5 then

—-— There is no default attribute for gradients. It’s always
black to white.

-- To have a different gradient for new tools, we’ll set one
up here but

-- only once. The "NewTool" flag is cleared immediately
afterwards so we

-- don’'t overwrite gradients when the comp is reopened at a
later time.

grad:AddColor(0.0, Pixel({R = 1.0, G = 0, B = 0, A = 1}))
grad:AddColor(0.5, Pixel({R = 0, G = 1.0, B = 0, A = 1}))
grad:AddColor(1.0, Pixel({R = 0, G =0, B = 1.0, A = 1}))

InGradient:SetSource(grad, 0, 0)
InNewTool:SetSource(Number(0.0), 0, 0)
end

end

There are a number of Inputs to a Fuse, Images, Numbers and 2D Points with XY values.

GetValue

Gets the current value (Parameter) of this Input from a Request

Summary
The GetValue function is used to retrieve the current values of a control from the current render
request. The Request object is the only argument this function will accept. GetValue returns either a
value or object which represents the current properties of an Input.
Usage
object:GetValue(object Request)

request (required, object)

The Request object is always passed to the Process event function as an argument. See the pages

for the Request object and Process event function for more information.

GetValue() returns an object (a subclass of the Parameter class). To get the value as a variable that
LUA can process further or compare to other data types, use the corresponding member of the
returned object:

— Point Xand Y returns float values of the x and y coordinates
— Text Value returns a string variable
— FulD Value returns a string variable containing the ID

Fuse Reference

44

GetSource

Gets the value of the Input at any given time

Summary

The GetSource function is used to return the value of an Input at a time different from the current
time. For example, GetSource could be used to produce images from the frames before and after the
current frame, or to average the values of a Blur slider across 10 frames.

Usage

Input:GetSource(number frame)

frame (number, required)

A numeric value representing which frame will be read to produce the value.

function Process(req)

local img = InImage:GetSource(req.Time + 5) --Gets the image 5
frames from now

OutImage:Set(req, img)

end

SetSource

Sets the Input to a given value

Summary

The SetSource function is used to set an Input to a specified value.

Usage

Input:SetSource(various value, number time)

value (object, required)

The value which should be assigned to the input. The type will vary according to the

inputs LINKID_DataType attribute. The value should be one of Fusion’s datatypes, like
Number, Text, or Point. This means a call like Input:SetSource("some text", 0) would fail, but
Input:SetSource(Text("some text"), 0) would work.

time (number, required)

The frame at which to set the input value. If an input is animated, this will ensure the value sets the
appropriate keyframe.

function Create()
InRed = self:AddInput("Red", "Red", {
INPID InputControl = "SliderControl",
INP_Default = 1.0,
INP_DoNotifyChanged = true,
INP_External = false

9]

function Process(req)

InRed:SetSource(Number(5.0),0)--This will set the slider to 5.0

Fuse Reference

45

GetAttr

Gets the value of a specified attribute

Summary

The GetAttr() function is used to retrieve the value of a specific attribute of this object.

Usage

result = Input:GetAttr(string attribute)

attribute (string, required)

The name of the attribute to query.

result (various)

The value of the specified attribute. The type will vary according to the attribute.

SetAttrs

Sets a table of tag attributes into the Input

Attributes

Name

Type : Description

INPID_InputControl

string : The ID of the type of tool window control used by the input.

INPID_PreviewControl

string : The ID of the type of display view control used by the input.

INPID_AddModifier

string : A tool of this type ID should be automatically created and
connected to this input, at creation time.

INPID_DefaultID

string : Inputs of datatype "FuID" should use this ID as their
default value.

INPS_DefaultText

string : Inputs of datatype "Text" should use this string as their default.

INPS_StatusText

string : The text shown on the status bar on mouse hover.

INP_External

boolean : Whether this input can be animated or connected to a tool
or modifier.

INP_Active

boolean : This input’s value is used in rendering.

INP_Required

boolean : The tool's result requires a valid Parameter from this input.

INP_Connected

boolean : The input is connected to another tool's Output.

INP_Priority integer : Used to determine the order in which the tool's inputs
are fetched.
INP_Disabled boolean : The input will not accept new values.

INP_DoNotifyChanged

boolean : The tool is notified of changes to the value of the input.

INP_Integer

boolean : The input rounds all numbers to the nearest integer.

INP_NumSlots

integer : The number of values from different times that this input can
fetch at once.

Fuse Reference

46

Name

INP_ForceNotify

INP_InitialNotify

INP_Passive

INP_InteractivePassive

INP_AcceptTransform
INP_AcceptsMasks

INP_AcceptsGLImages

INP_MinAllowed

INP_MaxAllowed

INP_MinScale
INP_MaxScale
INP_Default

INP_DefaultX

INP_DefaultY

Tips for Attributes

Type : Description

boolean : The tool is notified whenever a new parameter arrives, even if it
is the same value.

boolean : The tool is notified at creation time of the initial value of
the input.

boolean : The value of this input will not affect the rendered result, and
does not create an Undo event if changed.

boolean : The value of this input will not affect the rendered result, but it
can be Undone if changed.

boolean : This input will also accept TransformMatrix parameters.
boolean : This input will also accept Mask images.

boolean : This input will also accept Images with attached
OpenGL textures.

number : Minimum allowed value - any numbers lower than this value
are clipped.

number : Maximum allowed value - any numbers higher than this value
are clipped.

number : The lowest value that the input’s control will normally display.
number : The highest value that the input’s control will normally display.
string : Inputs of datatype "Number" should default to this value.

string : Inputs of datatype "Point" should use this as their
default X value.

string : Inputs of datatype "Point" should use this as their
default Y value.

— INP_InitialNotify defaults to true and is only done if INP_DoNotifyChanged is also true.

— There are no attributes called INPS_Name or INPS_ID like in the eyeonscript APL
Use LINKS_Name and LINKID_ID instead, to get the name or script ID of an input.

— INP_SendRequest, which isn't listed here, defaults to true and controls whether the input will

be requested before Process() is called. If you set this to false on image inputs, for example,

you can prevent Fusion from rendering connected branches before you have decided if you

need them or not. In this case, you cannot use Input:GetValue(req) to get the input's value. Use

Input:GetSource(time) instead. Also, if you use INP_SendRequest = false on the main image input,

the Fuse will fail if you don't take care of PreCalcProcess() yourself (or set INP_Required = false).

— INP_AcceptsDoD, Set to false to turn off Rol for an image input. Fusion will in this case always

request the full image window just as if the Fuse was a non-DoD tool.

Fuse Reference

47

— IC_DisplayedPrecision defines how many floating point digits are displayed for controls (e.g.
sliders). A value of 2, for example, would display a value of 0.523203 as 0.52, even though the
precise value is still used internally (and returned if the input is queried). Print will also return .52.

— IC_Steps defines how far a slider will move if you click to the left or to the right of its knob.
By=default, this value is derived from the minimum and maximum values that are displayed.

— INP_Disabled prevents the user from changing the input’s values or moving its preview control
widget in the viewer. However, it also prevents calls to Input:SetSource(). If your code has to
change such a disabled input you need to temporarily set INP_Disabled to false by calling
Input:SetAttrs({INP_Disabled = false})

— INP_DelayDefault, if set to true, allows you to define a default value for an input in the
OnAddToFlow() function. This is useful if a slider’s default value should depend on the
composition’s frame format or time range as this information isn't available in the Create()

function yet.

Ul

UI Controls are Sliders, Color selectors and widgets that are used for giving control over variables and
on screen positions that are used in the Fuse Plugin and will appear in the Inspector Tool Control area.

There are 14 different types of controls.

Description
The AddInput function is typically found within the Create event function of a Fuse. It is used to add
inputs (controls) to the tool. An input can be one of several control types, or an image type input which

appears on the tool tile in the flow.

Usage

self:AddInput(string labelname, string scriptname, table attributes)

labelname (string, required)

This string value specifies the label displayed next to the input control. The labelname allows
spaces, and so typically is used to present a ‘friendly’ name for an input control compared to the
scripting name described in the second argument.

scriptname (string, required)
This string value specifies the name of the input control for purposes of saving the value and
for scripting it. The scriptname must not have any spaces, and contain only pure alphanumeric

characters.

attributes (table, required)

This argument accepts a table of attributes used to define the properties of the input. Minimum
and maximum value, whether the tool accepts integer values only, or the options available in

a drop down menu are all set within this table. A list of attributes common to most Inputs is
displayed below. Attributes specific to a particular input type or preview control will be found in
the documentation for that type.

Fuse Reference

48

Common Input Attributes

Name

Type : Description

LINKID_DataType

string : specifies the type of data produced and used by the control.

A control which expects or outputs an image would use type "Image"
while a slider would use "Number". Valid values include: Image, Number,
Point, Text.

LINK_Main

integer : specifies the priority or order of LINK style controls. This is

used when calculating auto connection of tools in the flow. For example,
a tool with two inputs would specify values of 1 and 2 for LINK_Main. The
input with a value of 1 would have a higher priority than the control with a
value of 2.

INPID_InputControl

string : This attribute uses a string to describe the type of control.

Valid values include: ButtonControl, CheckboxControl, ColorControl,
ComboControl, ComboIDControl, FileControl, FontFileControl,
GradientControl, LabelControl, MultiButtonControl, MultiButtonIDControl,
OffsetControl, RangeControl, ScrewControl, SliderControl

INPID_PreviewControl

string : If present this attribute uses a string to describe the type of

on screen control displayed for the control. For example a Point type
control would set this attribute to "TransformControl" if a set of
crosshairs should be displayed in the views when the tool is selected.
Valid values include: AngleControl, CrossHairControl, ImgOverlayControl,
RectangleControl, PointControl, TransformControl

INP_Default numeric : This attribute is used to set the default value of a control.
Typically this will be an integer value.
INP_MinScale numeric : This attribute is used to set the minimum value displayed by

the control. Typically this attribute is applied to sliders and range controls.
This does not specify the absolute minimum value of the input, only the
highest value presented by the control when it is initially constructed. It
would still be possible to enter lower values, up to the value specified by
INP_MinAllowed.

INP_MaxScale

numeric : This attribute is used to set the maximum value displayed by
the control. Typically this attribute is applied to sliders and range controls.
This does not specify the absolute maximum value of the input, only the
highest value presented by the control when it is initially constructed. It
would still be possible to enter higher values, up to the value specified by
INP_MaxAllowed.

INP_MinAllowed

numeric : This attribute specifies the minimum allowable value for
the input.

INP_MaxAllowed

numeric : This attribute specifies the maximum allowable value for
the input.

INP_Required

boolean : This attribute specifies whether the input is required. If
this is set to false the tool will not fail if the inp is nil. Typically used
for non required image inputs - like the foreground of a Merge tool.
Defaults to True

Fuse Reference

49

Name

IC_ControlGroup

IC_ControlID

IC_Visible

ICD_Center

ICD_Width

PC_Visible

PC_GrabPriority

PC_ControlGroup

PC_ControlID

PC_HideWhileDragging

IC_ControlID

Type : Description

numeric : All inputs with the same IC_ControlGroup will be part of an
overall group of controls. For example, the Red, Green and Blue sliders of
a Color Control would all share the same IC_ControlGroup.

numeric : A unique identifier for an individual input within a control
group defined by IC_ControlGroup. For example, the Red slider in a color
control with IC_ControlGroup = 1 would have the IC_ControlID of 0, while
the Green slider would have an IC_ControlID of 1, and so on.

boolean : This attribute specifies whether an input is visible. Set it to false
to hide the input. Defaults to true.

numeric : This attribute will set the default of a slider to the center,
regardless of scale. This creates a non-linear slider, with the default value
centered regardless of the MinScale and MaxScale attributes.

numeric : This attribute specifies the width of the input, where a value of
1.0 is the full width of the control page.

boolean : This attribute specifies whether the PreviewControl associated
with an input is currently visible. Defaults to true.

numeric : A numeric value that specifies the grab priority of a preview
control input. The input with the highest PC_GrabPriority will be selected
first. Used when two controls overlap - for example the Angle and
Rectangle preview control found in a Merge or Transform tool.

numeric : All inputs with the same PC_ControlGroup will share the same
preview control. For example, the Width and Height sliders of a Rectangle
mask will have the same PC_ControlGroup.

numeric : A unique identifier for an individual input within a preview
control group defined by PC_ControlGroup. For example, a Width slider
for a RectangleControl would have a PC_ControlGroup of 0, while the
Height slider would be set to 1.

boolean : A true or false value which specifies whether the preview
control is visible while it is being dragged.

The value of IC_ControlID is sometimes related to a specific image channel. For example, if an X

position slider can have its value set by a pick button (see BeginControlNest), it needs to know

that it should read the image’s "position x" channel. Also, Image:GetChanSize() accepts these to

query available image channels. Here's an abbreviated list of valid values, taken from Pixel.h (part

of the SDK). Fusion 6.31 or later supports the uppercase channel constants. Earlier versions accept

integers only.

Fuse Reference

50

Description

The ButtonControl displays a single clickable button in the tools control window.

This control returns a Number with a value of either 1 (clicked) or 0 (unclicked). To add a Button, set

the INPID_InputControl attribute of the AddInput function to the string "ButtonControl".

Checking this Input’s value from within the Process dialog will not return a value other than 0. The only
time the value is 1 is when the button has been clicked. The button will always immediately return
to the unclicked state. For that reason, handling of the button click is generally done from within the

NotifyChanged function.

Attributes
Name Type : Description
BTNC_Align string : This attribute determines the alignment of the button. Valid
values are "Left", "CenteredLeft", "Center", "CenteredRight",
and "Right".
Example

InLabel = self:AddInput("This is a Button", "Labell", {
LINKID DataType = "Text",
INPID InputControl = "ButtonControl",
INP_DoNotifyChanged = true,
INP_External = false,

h

Description
The CheckboxControl displays a simple checkbox and label in the tools control window.
This control returns a Number with a value of either 1 (checked) or 0 (unchecked). To add a

CheckboxControl, set the INPID_InputControl attribute of the AddInput function to the string
"CheckboxControl".

A common usage is to display several checkbox controls on the same line through use of the AddInput
functions ICD_Width attribute. It is also generally a good idea to set INP_Integer = true.

Attributes
Name Type : Description
CBC_TriState boolean : this attribute determines whether the checkbox displays two
states or three.
Example

The following shows four checkboxes on the same row of the control window.

Fuse Reference

51

InR = self:AddInput("Red", "Red", {
LINKID DataType = "Number",
INPID InputControl = "CheckboxControl",
INP Integer = true,
INP Default = 1.0,
ICD Width = 0.25,
9]

InG = self:AddInput('"Green", "Green", {
LINKID DataType = "Number",
INPID InputControl = "CheckboxControl",
INP Integer = true,
INP Default 1.0,
ICD Width = 0.25,
9]

InB = self:AddInput("Blue", "Blue", {
LINKID DataType = "Number",
INPID InputControl = "CheckboxControl",
INP_Integer = true,
INP_Default = 1.0,
ICD Width = 0.25,
h

InA = self:AddInput("Alpha", "Alpha", {
LINKID DataType = "Number",
INPID_ InputControl = "CheckboxControl",
INP Integer = true,
INP_Default 1.0,
ICD _width = 0.25,
h

Description
The ColorControl adds a dialog used to select a color. It actually consists of several different sliders
and button controls combined together.

All of the Inputs associated with a ColorControl return a Text value. To add a ColorControl, set the
INPID_InputControl attribute of the AddInput function to the string "ColorControl".

All the Inputs that make up a ColorControl should have the same IC_ControlGroup attribute. The Red
slider should have an IC_ControlID of O, Greenis 1, Blue is 2 and Alpha is 3. See the example below.

Note that each of the elements is optional - it is perfectly valid to have a color control that displays only
an Alpha slider, for example. Additionally, this control can be used to show more than just RGBA. This

can be handy for producing color pickers for other channels in the image.

Fuse Reference

52

0=Red, 1=Green, 2=Blue, 3=Alpha, 4=BackgroundR, 5=BackgroundG, 6=BackgroundB.
7=BackgroundA, RealR,RealG,RealB,RealA, 12=Coverage, 13=NormalX, 14=NormalY, 15=NormalZ,
16=2,17=U, 18=V, 19=0bject, 20=Material.

Attributes
Name Type : Description
CLRC_ShowWheel boolean : This optional attribute determines whether the color wheel will
be displayed.
CLRC_ColorSpace string : This optional attribute is used to specify which color space is used
to draw the wheel. Valid options are "HSV", "HLS" and "YUV".
Example

An example of a full ColorControl.

InR = self:AddInput("Red", "Red", {
LINKID DataType = "Number",
INPID InputControl = "ColorControl",
INP_MinScale = 0.0,
INP_MaxScale = 1.0,
INP_Default = 1.0,
ICS_Name = "Color",
IC_ControlGroup = 1,
IC_ControlID = O,
}

InG = self:AddInput('"Green", "Green", {
LINKID DataType = "Number",
INPID InputControl = "ColorControl",
INP_MinScale = 0.0,
INP_MaxScale = 1.0,
INP_Default = 1.0,
IC_ControlGroup = 1,
IC_ControlID = 1,
3]

InB = self:AddInput("Blue", "Blue", {
LINKID DataType = "Number",
INPID InputControl = "ColorControl",
INP_MinScale = 0.0,
INP_MaxScale = 1.0,
INP_Default = 1.0,
IC_ControlGroup = 1,
IC_ControlID = 2,
9]

InA = self:AddInput("Alpha", "Alpha", {

Fuse Reference

53

Description

LINKID DataType = "Number",

INPID InputControl = "ColorControl",
INP_MinScale = 0.0,

INP_MaxScale = 1.0,

INP Default = 1.0,

IC_ControlGroup = 1,

IC_ControlID = 3,

h

The ComboControl presents a drop down menu, which returns a Number value. To add

a ComboControl,

set the INPID_InputControl attribute of the AddInput function to the

string "ComboControl".

The return value will be a number representing the position of the selected entry in the

ComboControl. The first item in the list will return 0, the second item will return 1, and so on.

Attributes
Name Type : Description
CC_LabelPosition string : This attribute determines where the label for the ComboControl

CCS_Addstring

Example

is drawn. Should be set to either "Vertical" or "Horizontal".
The default value is "Horizontal"

string : Each time this attribute is entered a new string is added to the
ComboControl. As a result, there should be multiple entries of CCS_
AddString, each within its own unnamed table index (see example below).

The following is an example AddInput function that duplicates the
Operator control on a Merge tool.

InOperation = self:AddInput("Operator"”, "Operator", {

LINKID DataType = "Number",

INPID InputControl = "ComboControl",
0.0,

INP Integer = true,

ICD Width = 0.5,

INP_Default

{ CCS_AddString = "Over", },
{ CCS_Addstring = "In", },
{ CCS_AddString = "Held Out", },
{ CCS_Addstring = "Atop", },
{ cCS_AddString = "XOor", },
CC_LabelPosition = "Vertical",
}

ComboIDControl

Fuse Reference

54

Description

The FileControl adds a dialog used to browse for paths or files on disk. It appears on the tool controls

as a text edit box
clicked to display

for display and direct entry of filenames, and a button to the right which can be
the Fusion file browser dialog.

This control returns a Text value. To add a FileControl, set the INPID_InputControl attribute of the

AddInput function to the string "FileControl".

Attributes
Name Type : Description
FC_IsSaver boolean : This attribute determines whether the file dialog may be used

to specify files that don't currently exist.

FC_PathBrowse

boolean : This attribute is used to specify if the file browse dialog is being
used to select a file, or a folder. If it is set to true, the dialog will be used to
select folders only. The default value is false.

FC_ClipBrowse

boolean : This attribute is used to specify if the file browse dialog is being
used to select an image or image sequence. When specified the dialog
will be configured with the correct filter to show only known image file
types, and the Gather Sequences checkbox will be enabled. The default
value is false.

FCS_FilterString

string : This attribute is used to specify what file types will be shown

by the dialog. The default value is to show All Files, which is equivalent

to the filterstring.

"All Files (*.*)|*.*[|".

A more complex filterstring might appear as

"FBX Files (*.fbx)|*.fbx|DAE Files (*.dae)|*.dae|OBJ Files
(*.obj)|*.obj|3DS Files (*.3ds)|*.3ds|DXF Files (*.dxf)|*.
dxf|'

Example

The following is an example AddInput function that is similar to the
Clip control on a Loader tool.

InFile = s

elf:AddInput("File", "File", {
LINKID DataType = "Text",

INPID InputControl = "FileControl",
FC_ClipBrowse = true,

h

Fuse Reference

55

Description

The FontFileControl adds a dialog used to select Fonts from the list of available fonts on the system. It
actually consists of two separate drop down menus. One contains a list of all available fonts, a second
displays the list of available styles for the currently selected font.

This control returns a Text value. To add a FontFileControl, set the INPID_InputControl attribute of the
AddInput function to the string "FontFileControl".

To create and access both components of the dialog the control should be created twice, with both
controls having the same IC_ControlGroup attribute, but with an IC_ControlID of 1 for the Font Name,
and of 2 for the Style. See the example below.

Attributes

None

Example

The following is a snippet from a Create function that would create both components of a Font
selection dialog.

InFont = self:AddInput('Font", "Font", {
LINKID DataType = "Text",
INPID InputControl = "FontFileControl",
IC_ControlGroup = 2,
IC_ControlID = 0,
INP Level = 1,
INP_DoNotifyChanged = true,

9]

InFontStyle = self:AddInput('Style", "Style", {
LINKID DataType = "Text",
INPID InputControl = "FontFileControl",
IC_ControlGroup = 2,
IC_ControlID = 1,
INP Level = 1,
INP_DoNotifyChanged = true,

9]

Description

Gradient Color control has a 1D color ramp. Default Gradient is 2 colors black to white. Use
OnAddToFlow to set default colors

Attributes

None

Fuse Reference

56

Example

InGradient = self:AddInput('Gradient", "Gradient", {

LINKID DataType = "Gradient",
INPID InputControl = "GradientControl",
INP DelayDefault = true,

})

Description

The LabelControl presents a single short text label to the control window for the tool. It does not

return any value. To add a LabelControl, set the INPID_InputControl attribute of the AddInput function

to the string "LabelControl".
The actual displayed value of the label control is set as the first argument to AddInput

This control should always have the INP_External = false attribute set.

Attributes

None
Example

InLabel = self:AddInput("This is a Label", "Labell", {
LINKID DataType = "Text",
INPID_ InputControl = "LabelControl",
INP_External = false,
INP Passive = true,

H

A LabelControl is also used as a way to toggle the visibility of other
controls. To create such a control nest, use the BeginControlNest
function. It will create a LabelControl with some additional attributes:

LBLC_DropDownButton = true -- turns a label control into a
control nest

LBLC_NumInputs = 2 -- how many of the following inputs will be
part of the control nest

LBLC NestLevel =1 -- ?

In addition to control nests, a LabelControl can also host the pick
button. Set LBLC PickButton = true and specify the picked inputs using
LBLC NumInputs = <num> (next num inputs), LBLCID InputGroup = <group
id>, or a series of { LBLCP Input = <input> } tags.

Fuse Reference

57

Description

The MultiButtonControl displays one or more buttons used to select from a range of options.

To add a MultibuttonControl to an input, you first specify the MultiButtonControl as the INPID_

InputControl attribute in an AddInput function. Each button is then described by a table added to the

same AddInput attribute table. See the example below :

This control returns an integer value representing which button is selected. If the first button is

selected, the value will be 0, the second button would return as 1, and so forth.

Attributes

Per-button attributes

MBTNC_AddButton

Set this attribute to a string which will be used as the label for the button.

MBTNCD_ButtonWidth

This should be a fractional value between 0 and 1, determining the
width of the button. A value of 1.0 would create a button the full width of
the control.

MBTNC_ShowLabel

Enables or disables displaying the button’s name text on the button.

MBTNC_ShowIcon

Enables or disables displaying the button’s icon on the button.

MBTNCS _ToolTip

Set this to a string to be displayed when hovering the mouse cursor over
the button.

Control attributes

MBTNC_ButtonHeight

This should be an integer value in pixels, determining the height of the
buttons. The default value is 26 pixels high.

MBTNC_StretchToFit

Setting this to true will stretch the buttons equally across the full width of
the control.

MBTNC_ShowName

Setting this to false will hide the name of the control.

MBTNC_NolconScaling

Enables or disables scaling of the button’s icon to the full size of
the button.

MBTNC_Type Can be one of "Normal", "Toggle" or "TriState".
MBTNC_Align Can be one of "Center", "Left" or "Right".
Example

The following fragment shows the creation of a MultiButtonControl with four options.

function Create()

InOperation self:AddInput("Operation”, "Operation", {
LINKID DataType = "Number",
INPID_ InputControl = "MultiButtonControl",

Fuse Reference

58

INP_Default = 0.0,

{ MBTNC_AddButton = "Min", MBTNCD_ButtonWidth = 0.25, },
{ MBTNC_AddButton = "Max", MBTNCD ButtonWidth = 0.25, },
{ MBTNC_AddButton = "Add", MBTNCD_ButtonWidth = 0.25, },
{ MBTNC_AddButton = "Sub", MBTNCD_ ButtonWidth = 0.25, },

9]

Description

The OffsetControl is generally used to represent a 2D coordinate, and presents separate edit boxes

for the Xand Y coordinates. It is frequently associated with a the Crosshair preview control.

To add an OffsetControl, set the INPID_InputControl attribute of the AddInput function to the string

"OffsetControl".

OffsetControl returns the Point datatype.

Attributes
Name

OFCD_DisplayXScale

OFCD_DisplayYScale

INP_DefaultX

INP_DefaultY

Example

Type : Description

numeric : The value displayed in the offset control for the X axis will be
multiplied by the number provided here.

numeric : The value displayed in the offset control for the X axis will be
multiplied by the number provided here. See the effect of the Merge and
Transform tools reference inputs on the Size input for an example of the
effect of these attributes.

numeric : The default value to use for the X coordinate.

numeric : The default value to use for the Y coordinate.

The following example is a very simplified Fuse which uses a crosshair to transform an image.

FuRegisterClass("SampleOffset"”, CT Tool, {

REGS_Category = "Fuses\\Samples",
REGS_OpIconString = "SOf",
REGS_OpDescription = "SampleOffset",
}

function Create()

InCenter =

self:AddInput('Center", "Center", {

LINKID DataType = "Point",

INPID InputControl = "OffsetControl",

INPID PreviewControl = "CrosshairControl",

3]

Fuse Reference

59

InImage = self:AddInput("Input”, "Input", {
LINKID DataType = "Image",
LINK Main = 1,
}

OutImage = self:AddOutput("Output”, "Output", {
LINKID DataType = "Image',
LINK Main = 1,
}

end

function Process(req)
local img = InImage:GetValue(req)

local center = InCenter:GetValue(req)

out = img:Transform(nil, {
XF _XOffset = center.X,
XF YOffset = center.Y,
XF_XAxis = 0.5,
XF _YAxis = 0.5,
XF_XSize = 1,
XF YSize = 1,
XF _Angle = 0,
XF_EdgeMode = "Black',

9]

OutImage:Set(req, out)

end

Description

The RangeControl produces a control with a high and low range which can be used to specify a range
of value. The control displayed is actually composed of two seperate controls, each of which returns

a Number value. To add a RangeControl, create two inputs using the AddInput function. Set the
INPID_InputControl attribute to the string "RangeControl", and make sure both controls have the
IC_ControlGroup set to the same value.

Set the input which will represent the Low value to have an IC_ControlID of 0, and the input which
represents the High value to IC_ControlID of 1. See the example below.

Attributes
Name Type : Description
RNGCS_LowName string : The label to use on the left (low) side of the control. Overrides the

name set by the first argument in the AddInput() function.

Fuse Reference

60

Name
RNGCS_MidName

RNGCS_HighName

RNGCD_
LowOuterLength

RNGCD_
HighOuterLength

Example

Type : Description
string : The label to use in the center of the control. Defaults to blank.

string : The label to use on the right (high) side of the control. Overrides
the name set by the first argument in the AddInput() function.

number : This attribute can be used to specify the displayed Low limit for
the range control. Normally this will be equal to the INP_Default value, or
to 0. Lower values can still be entered into the control, this only sets the
initial display. Using this attribute will also color the range control yellow.

number : This attribute can be used to specify the displayed High limit for
the range control. Normally this will be equal to the INP_Default value, or
to 1. Higher values can still be entered into the control, this only sets the
initial display. Using this attribute will also color the range control yellow.

The following is an example AddInput function that displays a range control.

InGLow = self:AddInput('Green Low", "GreenLow", {
LINKID DataType = "Number",
INPID InputControl = "RangeControl",

INP_Default = 0.0,

IC_ControlGroup = 2,

IC_ControlID = O,

}

InGHigh = self:AddInput('Green High", "GreenHigh", {
LINKID DataType = "Number",
INPID InputControl = "RangeControl",

INP Default = 1.0,

IC_ControlGroup = 2,

IC_ControlID = 1,

h

Description

The ScrewControl presents an infinite slider with no minimum or maximum, with fine control

over numbers, typical
To add a ScrewContro

"ScrewControl".

Attributes

None.

ly used to represent values like rotation angles. It returns a Number value.
|, set the INPID_InputControl attribute of the AddInput function to the string

Fuse Reference

61

Example

InScrewAngle = self:AddInput("Infinite Slider", "ScrewControl", {
LINKID DataType = "Number",
INPID InputControl = "ScrewControl",
INP_MinScale = 0.0,

100.0,

INP_Default = 0,

9]

INP_MaxScale

Description

The SliderControl presents a simple slider, which returns a Number value. To add a SliderControl, set
the INPID_InputControl attribute of the AddInput function to the string "sliderControl".

Attributes
Name Type : Description
SLCS_LowName string : An optional left justified label that overrides the usual label. Used
in conjunction with SLCS_HighName
SLCS_HighName string : An optional right justified label displayed in conjunction with
SLCS_LowName. See the Subtractive - Additive slider in the Merge tool for
an example of the effect of these attributes.
Example

function Create()

InGain = self:AddInput("Gain", "Gain", {

LINKID DataType = "Number",

INPID InputControl = "SliderControl",
INP_Default = 1.0,

h

Description

The TextEditControl presents a Text input box, which returns a String of Characters.

Attributes

None

Fuse Reference

62

Example

InTextEntry = self:AddInput('Type Your Text", "Text", {

LINKID DataType = "Text",

INPID InputControl = "TextEditControl",

INPS_DefaultText = "hello", -- use instead of INP_ Default!
TEC_Lines = 3, -— height of text entry (default is 8)
TEC_Wrap = true, -- automatic word-wrapping (default is
false)

TEC_ReadOnly = true, -- default is false (you should also set INP_
External = false)

TEC_CharLimit = 40, --maximum number of allowed characters

(default is 0, no limit)

TEC DeferSetInputs = true, -- call NotifyChanged when focus is lost
(default is

false, call on every keystroke)

})

There are a number of on screen Ul widgets for interacting with images, called Preview Controls.

The primary control is the 2D Point Control, other UI widgets link PointControl to other controls.

Point Control
Description

The Point controls are 2D used for on screen manipulation and return 2 values X and Y. These are used
in tools like Merge and Transform to position the images.

Attributes

None
Example

InCenter = self:AddInput(“Center", "Center", {

LINKID DataType = "Point",

INPID InputControl = "OffsetControl",
INPID PreviewControl = "CrosshairControl",
INP_DefaultX = 0.5,

INP_DefaultY = 0.5,

H

INPID_PreviewControl:

There are 5 different on screen Ul Widget used to link other Controls to the Point control, to give
added on screen interactions. RectangleControl can be linked to a size slider control.

Fuse Reference

63

AngleControl
Description

The AngleControl is an preview control that shows a thin line used to represent the rotation around
a specific point. The angle is added to an Input by setting the INPID_PreviewControl attribute to
"AngleControl" in the AddInput function’s attribute table.

Attributes
Name Type : Description
ACP_Center input: specifies which input is used to set the position of the angle
control in the view. Typically this is an OffsetControl
ACP_Radius input : specifies which input is used to set the width of the angle control
in the view. Typically this will be a SliderControl.
Example

The following example is a very simplified Fuse which uses a crosshair and angle control to
transform an image.

FuRegisterClass("SampleAngleControl”, CT Tool, {
REGS_Name = "Sample Angle Control",
REGS_Category = "Fuses\\Samples",
REGS_OpIconString = "SOf",

REGS_ OpDescription = "SampleOffset",
h

function Create()

InCenter = self:AddInput("Center", "Center", {

LINKID DataType = "Point",

INPID InputControl = "OffsetControl",
INPID PreviewControl = "CrosshairControl",
b

InAngle = self:AddInput('Angle", "Angle", {
LINKID DataType = "Number",
INPID InputControl = "ScrewControl",
INPID PreviewControl = "AngleControl",
INP_MinScale = 0.0,
INP_MaxScale = 360.0,
INP_Default = 0.0,
ACP_Center = InCenter,
h

InImage = self:AddInput("Input”, "Input", {
LINKID DataType = "Image",
LINK_Main = 1,

})

Fuse Reference

64

OutImage = self:AddOutput("Output”, "Output", {
LINKID DataType = "Image',
LINK_Main = 1,
}

end

function Process(req)

local img InImage:GetValue(req)

local center = InCenter:GetValue(req)

local angle InAngle:GetValue(req).Value
out = img:Transform(nil, {
XF _XOffset = center.X,
XF_YOffset = center.Y,
XF_XAxis = 0.5,
XF _YAxis = 0.5,
XF _XSize = 1,
XF YSize = 1,
XF Angle = angle,
XF_EdgeMode = "Black',
9]

OutImage:Set(req, out)

end

CrosshairControl
Description

The crosshair control is a preview control that shows a crosshair to represent the position of Point
value. The crosshair is added to an Input by setting the INPID_PreviewControl attribute of an input to

"CrosshairControl" in the AddInput function’s attribute table.

There are attributes that apply to all preview controls. PCD_OffsetX and PCD_OffsetY will shift the
crosshair in the viewer by the specified distance. This is useful if you want a pivot crosshair to follow
the translation crosshair (as is the case with Fusion’s transform tool). To implement this behavior, you
need to update those attributes in the NotifyChanged() event handler.

Attributes
Name Type : Description
CHC_Style string : Determines the appearance of the crosshair control. Can be set to
"NormalCross", "DiagonalCross", "Rectangle", or "Circle".
Example

The Fuse example above in Point Control demonstrates CrosshairControl.

Fuse Reference

65

RectangleControl
Description
The RectangleControl is an on screen preview control which displays a simple rectangle. The

RectangleControl is added to an Input by adding the INPID_PreviewControl attribute to the AddInput
function’s attribute table.

If you use the RCD_LockAspect attribute below, then the width and height are both determined

by the same input, and no PC_ControlGroup is needed. Otherwise, a separate input is needed for
both the width and height Both inputs should use the same PC_ControlGroup attribute. The input
with the attribute PC_ControlID = 0 will determine the width, and the one with PC_ControlID = 1 will
determine the height of the Rectangle. Both inputs should have the INPID_PreviewControl set to

"RectangleControl".

A slider set to PC_ControlID = 2 can optionally be used to determine the radius of the corners.

Attributes

Name Type : Description

RCP_Center input: specifies which input is used to set the position of the rectangle
control. Typically this is an OffsetControl

RCP_Angle input : specifies which input is used to set the angle of the rectangle
control. Typically this will be a ScrewControl.

RCD_LockAspect numeric : If this attribute is set to 1.0 the rectangle control will use the
same value for the width and height.

RCD_SetX numeric : A numeric value used to set the position of the rectangle on
the X axis.

RCD_SetY numeric : A numeric value used to set the position of the rectangle on
the Y axis.

In addition to RCP_Center and RCP_Angle there is also RCP_Axis which needs to point to the input
control that defines the center of rotation for the rectangular overlay. In many standard tools, this is
an OffsetControl labeled "Pivot".

The transform fuse example that ships with Fusion doesn’'t completely recreate the rectangle overlay
of the regular transform tool. By using RCP_Angle and RCP_Axis, the overlay is transformed correctly.
However, the preview controls for angle and pivot don't move along with the rectangle. This needs to
be implemented manually:

Turn on INP_DoNotifyChanged for the input control that is linked to RCP_Center.

In the NotifyChanged event handler, set two attributes for both your angle and pivot preview controls
(i.e. the inputs linked to RCP_Angle and RCP_Axis): PCD_OffsetX and PCD_OffsetY will shift the preview
controls in the viewer and need to be updated with the current position of the center control (minus
0.5 to account for it's default resting position in the middle of the image).

If you want to use separate sliders for X and Y size, keep in mind that PC_Visible (to show/hide the
preview widget) also has to be set for both inputs. Otherwise you'll only hide the width or height part
of your preview control.

Fuse Reference

66

Example
The Create function below shows a rectangle control associated with separate width, height and

radius sliders

function Create()

InCenter = self:AddInput('Center"”, "Center", {

LINKID DataType = "Point",

INPID InputControl = "OffsetControl",
INPID PreviewControl = "CrosshairControl",
h

InWidth = self:AddInput("width", "width", {

LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INPID PreviewControl = "RectangleControl",

PC_ControlGroup = 1.0,
PC_ControlID = 0,
INP_MaxScale = 2,
INP_Default = 1.0,
b

InHeight = self:AddInput('Height", "Height", {

LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INPID PreviewControl = "RectangleControl",

PC_ControlGroup = 1.0,
PC_ControlID = 1,
INP_MaxScale = 2,
INP_Default = 1.0,

b

InRadius = self:AddInput('Corner Radius", "CornerRadius", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INPID PreviewControl = "RectangleControl",
PC_ControlGroup = 1.0,
PC_ControlID = 2,
INP_MaxScale = 0.2,
INP_Default = 0.0,
h

InAngle = self:AddInput('Angle”, "Angle", {
LINKID DataType = "Number",
INPID InputControl = "ScrewControl",
INPID PreviewControl = "AngleControl",
INP_MinScale 0.0,

360.0,

INP_MaxScale

Fuse Reference

INP Default = 0.0,
ACP_Center = InCenter,

h

InWidth:SetAttrs({
RCP_Center = InCenter,
RCP_Angle = InAngle,
h

InImage = self:AddInput("Input”, "Input", {
LINKID DataType = "Image",
LINK Main = 1,
}

OutImage = self:AddOutput("Output", "Output", {
LINKID DataType = "Image',
LINK Main = 1,
})

end

Methods

Sets an image to be output, into the request stream.

Members

None
Example

OutImage:Set(req, out)

Process

Process() is where the image processing, control and calculations happen. Images, variables, text
and numbers from the UI controls are input into the Process function. There are a number of core
functions and processes available to manipulate images and pixels.

Image Processing Function

The engine has a number of Image processing routines builtin, the core set of tools like Blur, Merge,
Transform and Color Operators, all optimized for features and performance.

Fuse Reference

68

Summary

The BlendOf function will blend one image with another image. A numerical value can be used to
specify how much of the foreground is blended with the background, or an image can be used to
provide a map providing different blend values for each pixel. This is the function used internally by
Fusion when a tools blend slider is adjusted.

The function returns a new image containing the results of the blend operation.

Usage
Image:BlendOf(image fg, numeric val) OR
Image:BlendOf(image fg, image map)
fg (image, required)
The image to use as the foreground for the blend operation.
val (numeric, required)
A numeric value that describes how much of the foreground is combined with the background.
Alternatively, this argument can be an image map, as described below.
map (image, required)

A map image that describes how the pixels from the foreground should be combined with the
background. The value of the pixels in the map image provide the amount of Blend. Map value of
zero will be background, and map value 1 will be foreground.

Example

This example blends one image with another using a third image as a map.

function Process(req)
local img_bg = InBG:GetValue(req)
local img_ fg = InFG:GetValue(req)
local map = InMap:GetValue(req)

img = img_bg:BlendOf(img_ fg, map)

OutImage:Set(req, img)

end

Summary

The Blur function will blur the image. The function returns a new image containing the results of the
blur. Alternatively, if the first argument specifies an already existing image object, then the results will
be copied into that image instead. In order to give the user a blur slider that works like the standard
blur tool, divide size by 720 before calling the Blur

Fuse Reference

69

Usage

Image:Blur(image dest_image, table options)

dest_image (image, optional)

The image object where the results of the blur will be applied. If none is provided, a new image will

be created.

options (table, required)

A table containing values which describe the various options available for the blur. See the

attributes below.

Options Table

BLUR_Type
The blur type is a string which represents the type of blur applied to the image. Valid options
are: "Box", "Soften", "Bartlett", "Sharpen", "Gaussian", "Hilight", "Blend",

"Solarise"

BLUR_Red, BLUR_Green, BLUR_Blue, BLUR_Alpha

These four tags are used to tell the Blur function which channels of the image to affect. A value
of true enables blur for the channel. A value of false disables it. The default behaviour if this tag
is not specified is true.

BLUR_XSize, BLUR_YSize
These tags specify the strength of the blur along the X and Y axis, respectively. A value of 1
represents a blur equal to the width of the image.

BLUR_Blend

Avalue between 0 and 1 which indicates how much of the original input image to blend into
the result of the Blur. Unlike the Blend slider presented by the Common Controls tab, this
blend takes place inside the blur itself, and thus may be somewhat faster. If not specified the
default value will be 1.

BLUR_Normalize
BLUR_Normalize is used when applying Glow to the blurred image. To match what the Glow
tool does pass in "1.0 - glow" as the value for that tag.

BLUR_RedScale, BLUR_GreenScale, BLUR_BlueScale, BLUR_AlphaScale
The blur scale tags are multipliers for the results of the glow applied with BLUR_Normalize.
These match the glow tool's "Color Scale" options.

Example

function Process(req)

local img = InImage:GetValue(req)
local blur strength = InBlur:GetValue(req).Value
local result = Image({IMG_Like = img})

img:Blur(result, {
BLUR_Type = "Gaussian",
BLUR_Red = true,
BLUR_Green = true,
BLUR_Blue = true,
BLUR Alpha = false,

Fuse Reference

70

BLUR_XSize = blur_ strength/img.OriginalWidth,
BLUR_YSize

h

blur strength/img.OriginalwWidth,

OutImage:Set(req, result)

end

Summary

The ChannelOpOf function performs operations on image channels from one or more images. It
can be used to copy the red channel from one image to the alpha channel of another, or to multiply
the RGB color channels of one image by its own alpha. This function essentially provides all the
functionality normally found in the Channel Booleans tool.

The function returns a new image which contains the result of its operations.

Usage

Image:ChannelOpOf(string operation, image fg, table options)

operation (string, required)
A string that specifies the mathematical operation the function will use when combining channels.

Can be one of the following: "Copy", "Add", "Subtract", "Multiply", "Divide", "Max", "Min",
"Invert", "Difference", "SignedAdd", "Threshold".

fg (image, required)

The image object used as the foreground, or second image in the operation. If this is nil, then the
function will use the Image object calling the function as the foreground as well (i.e. "Bg.R" is
equivalent to "Bg.R").

options (table, required)

Atable containing named entries describing how each channel of the background image should
be processed to produce the result. Each entry in the table may contain either a numeric constant
value, or a string specifying a channel in the foreground or background image, which is combined
using the specified operation to produce the desired result. The channels used in the entry are
abbreviations, and the values are strings that read either Fg.channel or Bg.channel. Case is not
important. See the Options section below for a list of acceptable channel abbreviations. Some
example options tables are shown below:

{ R = "Fg.R", G = "Fg.G", B = "Fg.B", A = "Fg.A" }

{R
{R

"bg.a", G = "bg.a", B = "bg.a", A = 1.0 }
blend, G = blend, B = blend, A = blend }

Options Table

Channel Abbreviations (case is not important)

— R,G,B,A
Red, Green, Blue and Alpha channels

— BgR, BgG, BgB, BgA
The Background Red, Green and Blue channels

Fuse Reference

71

—Z
Z Buffer Channel

— Coverage
Z buffer coverage channel

— ObjectID, MaterialID
The ObjectID and MateriallD channels

— U, VW
UV and W texture map coordinates channels

— NX, NY, Nz
XYZ normal channels

— VectorX, VectorY
The forward X and Y motion vector channels to the next frame

— BackVectorX, BackVectorY
Back X and Y motion vectors to the previous frame
— DisparityX, DisparityY
Per pixel Disparity position between 2 images, normally stereo images

— PositionX, PositionY, PositionZ
World position channels

— HLS.H, HLS.L, HLS.S
Hue, Lightness and Saturation channels

— YUVY, YUV.U, YUV.V
YUV colorspace channels

Example

This example would copy the RGBA channels in the foreground image to
the background and return the results to img_ out.

img_out = img:ChannelOpOf("Copy", img_fg, { R = "Fg.R", G = "Fg.G", B =
"Fg.B", A = "Fg.A" })

This example would subtract foreground’s RGBA channels from the
background and return the results to img out.

img_out = img:ChannelOpOf("'Subtract", img fg, { R = "Fg.R", G = "Fg.G", B
= "Fg.B", A = "Fg.A" })

This example would Add the R, G and B of image bg to the R, G and B of
image fg, returning the results to img out.

img out = img bg:ChannelOpOf("Add", img fg, { R = "Fg.R", G = "Fg.G", B
= "Fg.B", A = "Fg.A" })

This example would multiply every pixel in img bg by the value of blend
(in this case 0.5) and return the results to img_ out.

blend = 0.5

img out = img bg:ChannelOpOf("Multiply", nil, { R = blend, G = blend, B
= blend, A = blend })

Fuse Reference

72

This example would clip every pixel in img bg outside the range of 0.2
0.8, scale the remaining pixels to the range of 0 .. 1 and return
the results to img out.

blend = 0.5

out = bg:ChannelOpOf("Threshold", nil, { R = "bg.r", G = "bg.g",
B = "bg.b", A = "bg.a" }, 0.2, 0.8)

This will copy the alpha from the foreground image to the background
output image

img = img:ChannelOpOf("Copy", img_ fg, {A = fg.A})

This will not affect the RGB channels and on multiply alpha

img = img:ChannelOpOf("Multiply", nil, {R = nil, G = nil, B = nil,
A = gain})

Summary

The CopyOf method returns a new Image object which is a copy of the current image.

Also Copy() is a generic function that all parameter types may implement. CopyOf() is specific to
Image. The only real difference in behaviour is that CopyOf() may be interrupted if the tool is told to
abort. Copy() will always complete the copying across of pixel data. It is generally a better idea to use
CopyOf() with images, but either will work

Usage
Image:CopyOf()
Example
function Process(req)

local img = InImage:GetValue(req)

local out = img:CopyOf()

OutImage:Set(req, out)

end

Summary

The CSConvert method will convert the image to the specified color space.
Usage
Image:CSConvert(string from, string to)

from (string, required)

A string specifying the colorspace the image is currently in. Can be one of the following values.
IIRGBIVI HHLSH, IIYU\/II’ IIYIQII’ IICMYHI HHSVHI HXYZH, VILABII.

Fuse Reference

73

to (string, required)
A string specifying the colorspace to convert the image into. Can be one of the following values.
IIRGBIVI IVHLSII, IIYUVII’ IIYIQII’ IICMYHI HHSVHI VIXYZHI VILABII.

Example

A simple Fuse to convert an Image from RGB to HLS and back again.

function Process(req)
local op = InOperation:GetValue(req).Value

local img = InImage:GetValue(req)

local newimg = img:Copy()

if op == 0 then
newimg:CSConvert("RGB", "HLS")
else
newimg:CSConvert("HLS", "RGB")
end

OutImage:Set(req, newimg)

end

Summary

The ErodeDilate function will apply an erode or dilate process to the image. The function returns a
new image containing the results of the operation. Alternatively, if the first argument specifies an
already existing image object, then the results will be copied into that image instead.

Usage
Image:ErodeDilate(image dest_image, table options)
dest_image (image, optional)
The image object where the results of the erode/dilate will be applied. If none is provided, a new
image will be created.
options (table, required)
A table containing values which describe the various options available for the erode/dilate. See the
attributes below.
Options Table

— ErDI_AmountX, ErDI_AmountY
These tags specify the strength of the operation along the X and Y axis, respectively. Negative
values will produce an erode operation, and positive values will produce a dilate operation.

Avalue of 1 represents an operation equal to the width of the image.

— ErDI_Filter
The filter is a string which represents the ‘shape’ of the effect. Valid options are: "Box", "Linear",

"Gaussian", "Circle"

Fuse Reference

74

The circle type requires that ErDI_AmountX and ErDI_AmountY are either both positive

or both negative.

— ErDI_Red, ErDI_Green, ErDI_Blue, ErDI_Alpha

These four tags are used to indicate which channels of the image to affect. A value of true

enables the operation for the channel. A value of false disables it. The default behaviour if this

tag is not specified is true.

Example

function Process(req)
local img = InImage:GetValue(req)
local amount = InAmount:GetValue(req).Value

local result = Image({IMG_Like = img})

img:ErodeDilate(result, {
ErDl Filter = "Box",
ErDl_Red = true,
ErDl_Green = true,
ErDl_Blue = true,
ErDl_Alpha = true,
ErDl_AmountX = amount/img.OriginalWidth,

ErDl AmountY = amount/img.OriginalWidth,
}

OutImage:Set(req, result)

end

Summary

The Fill method will fill the image with the color specified by the Pixel object provided as its

sole argument.

Fill() will also change the canvas color of an image. If you just want to fill the image (inside its DoD) and

preserve the canvas color, you need to save it first using GetCanvasColor() and restore it afterwards

using SetCanvasColor().

Usage
img:Fill(object pixel)
object (pixel, required)
This argument should be set to a pixel object.

Example

function Process(req)

img = InImage:GetValue(req)

p = Pixel({R = 0.5, G = 0.2, B = 0, A = 1})

Fuse Reference

75

out = Image({IMG_Like = img})
out:Fill(p)

OutImage:Set(req, out)

end

Summary

The Gamma method applies the gamma adjustment specified in the method’s sole argument to every
pixel in the Image. The result is applied directly to the Image object which calls the function. This
function does not return a value.

Usage

Image:Gamma(number r, number g, number b, number a)
numberr, g, b, a (number, required)
The amount by which to gamma the image.

Example

function Process(req)
local img = InImage:GetValue(req)

local gamma = 0.5
local newimg = img:Copy()
newimg:Gamma(gamma, gamma, gamma, 1)

OutImage:Set(req, newimg)

end

Summary

The Gain function multiplies every pixel in the image by the specified value. The result is applied
directly to the Image object which calls the function. This function does not return a value.

Usage
Image:Gain(number r, number g, number b, number a)

number r, g, b, a (humber, required)

The amount by which to gain the image.
Example

function Process(req)
local img = InImage:GetValue(req)

local gain = InGain:GetValue(req).Value

Fuse Reference

76

local newimg = img:Copy()

newimg:Gain(gain, gain, gain, gain)

OutImage:Set(req, newimg)

end

Summary
The GetCanvasColor function is used to retrieve the canvas color values of an Image.
The canvas color is the "default" pixel color, and is used for any part of the image which is not explicitly

defined by pixels. This is usually black/transparent, but can be different after certain operations, such
as inverting the image.

Usage
GetCanvasColor(object pixel)
Pixel
The Pixel object that will receive the color values of the image’s canvas.

Example

local p = Pixel()

img:GetCanvasColor(p)

if p.R == 0 and p.G == 0 and p.B == 0 and p.A == 0 then
print("Image canvas is black/transparent")

else
print("Image canvas is non-black.")

end

Summary

The GetPixel function is used to retrieve the values of a specific pixel in an Image. This uses actual
pixel co-ordinates, and must always be within image bounds.

Usage
Image:GetPixel(integer x_position, integer y_position, object pixel)
X_position
The position of the pixel to get on the x axis
Y_position
The position of the pixel to get on the y axis

Pixel

The Pixel object that will receive the color values of the image’s pixel.

Fuse Reference

77

Example

A simple 8 bit histogram function

local p = Pixel()

local histoR = {}
local histoG = {}
local histoB = {}
local histoA = {}

local r,qg,b,a

-- initialise the histogram table

for i = 0,255 do
histoR[i] = 0

histoG[i]

0
histoB[i] 0
histoA[i] 0

end

for y=0,Height-1 do

if self.Status

~= "OK" then break end

for x=0,Width-1 do

img:GetPixel(x,y, Pp)

-- convert float 0..1 values into int 0.255
* 255)
* 255)
* 255)
* 255)

math.floor(p.R
math.floor(p.G
math.floor(p.B
math.floor(p.A

—-- check for out-of-range colors

r =
g =
b =
a =
if r >=
if g >=
if b >=
if a >=

end
end
Summary

0 and r <=
0 and g <=
0 and b <=

0 and a <=

255
255
255
255

then histoR[r]
then histoG[g]
then histoB[b]
then histoAla]

histoR[r]
histoG[g]
histoB[b]
histoA[a]

o S S o

end
end
end

end

The Image function is used when a new image needs to be created in memory. Its sole argument is
a table of attributes which describe the new image. The image function returns a handle to the new

Image object.

Fuse Reference

78

Usage

Image(table image_attributes)

image_attributes

The Image function’s only argument is a table of attributes which describe the images width,

height, color depth, and so forth. In the majority of cases the width, height, aspect depth and

other attributes of the new image should exactly match those of another image already in

memory. In that case the attribute table would be as simple as

local out =

Image({IMG_Like=image}

There are occasionally times when it will be necessary to specify one or more of the values

explicitly, instead of taking them from another image input. For example, if we wanted to create an

image exactly like the image src_image, but with a different color depth, we might use :

local out =

Image({IMG Like = img, IMG_ Depth = src_depth})

In a source tool like the native Background tool or the Plasma tool, it is usually necessary to specify

all of the Image attributes.

Image Attributes

The following attributes can be used when creating a new Image using the Constructor function.

Name

IMG_Like

IMG_CopyChannels

IMG_CopyChannelsAux

IMG_Height

IMG_XScale

IMG_YScale

Description

Set the IMG_Like attribute to an already existing image to copy that
image's attributes to the new image.

Set this to false to create an Image with different channels than the
IMG_Like Image. Use IMG_Channel to then specify the channels the new
Image should contain. If no channels are specified, a 4 channel (RGBA)
Image will be created.

If set to false, allows you to use IMG_Like but discard the aux channel
configuration.

Set the IMG_Height attribute to an integer value representing the actual
height of the image in pixels.

Set the IMG_XScale to a numeric value representing the X aspect
of the image. For an NTSC D1 format image the value would be 0.9,
for example.

Set the IMG_YScale to a numeric value representing the Y aspect
of the image. For an NTSC D1 format image the value would be 1.0,
for example.

Fuse Reference

79

Name

IMAT_OriginalWidth

IMAT_OriginalHeight

IMG_Depth

IMG_Quality

IMG_ProxyScale

IMG_MotionBlurQuality

Description

Set the IMAT_OriginalWidth to the original width of the image in

pixels. When a composition is in Proxy mode, it is possible that
IMG_Width and IMG_Height will differ from the IMAT_OriginalWidth and
IMAT_OriginalHeight values.

Set the IMAT_OriginalHeight to the original height of the image

in pixels. When a composition is in Proxy mode, it is possible that
IMG_Width and IMG_Height will differ from the IMAT_OriginalWidth and
IMAT_OriginalHeight values.

Set the IMG_Depth attribute to match the image depth desired for the
image. This will be an integer value, using the following table :

1 - Single channel image, 8 integer bits per channel.

2 - Single channel image, 16 integer bits per channel.

3 - Single channel image, 16 float bits per channel.

4 - Single channel image, 32 float bits per channel.

5 - Four channel image, 8 integer bits per channel.

6 - Four channel image, 16 integer bits per channel.

7 - Four channel image, 16 float bits per channel.

8 - Four channel image, 32 float bits per channel.

The IMG_Quality attribute is a boolean value which specifies whether
the image is High Quality (true) or Interactive Quality (false). The
IMG_Quality will be true during a final render, or if the HiQ button in the
Time Ruler of the composition is selected. It is usually set by calling the
Request:IsQuick function.

If you create a temporary image, make sure not to omit IMG_Quality

It defaults to "false" which means that scaling and merging it over
another image will use nearest-neighbor filtering (resulting in jagged
edges). Either set it according to what the Request object returns or set
it to true to always use smooth filtering even when the comp is in low
quality mode.

The IMG_ProxyScale is an integer value representing the current Proxy
scale of the image. For example if the current proxy is 2/1, then this
should be set to 2.

The IMG_MotionBlurQuality attribute is a boolean value which specifies
whether Motion Blur is currently enabled for this image. It is usually set
by calling the Request:IsNoMotionBlur function.

Fuse Reference

80

Name

IMG_Channel

IMG_DataWindow
IMG_ValidWindow

IMG_NoData

Description

Specify the channels which should be included in the image using the
IMG_Channel table values. This is different from all the ones table values
above. It should be specified as shown here.

local imgattrs = {
IMG Document = self.Comp,
"Red”, },

{ IMG_Channel
{ IMG_Channel

"Green", 1},

{ IMG_Channel
{ IMG_Channel
IMG_Width = 1920,
IMG_Height = 1080,

"Blue", },
"Alpha", },

IMG_XScale = 1.0,
IMG_YScale = 1.0,
IMG Quality = not req:IsQuick(),

IMG_MotionBlurQuality = not
req:IsNoMotionBlur(),

}

Valid channel names include :

— "Red", "Green", "Blue", "Alpha",

— "BgRed", "BgGreen", "BgBlue", "BgAlpha"
— "Z","Coverage"

— "Object", "Material"

— "yt Ve W

— "NormalX", "NormalY", "NormalZ"

— "PositionX", "PositionY", "PositionZ"

— "VectorX", "VectorY"

— "BackVectorX", "BackVectorY"

— "DisparityX", "DisparityY"

This is used to define the DoD of an image. DataWindow contains the
actual size of the pixel area that may be accessed. Writing outside of its
bounds may crash

ValidWindow specifies the area for which the image is valid (usually the
Region of interest. If a new request that is just a subarea of the old one
is performed, no re-rendering will take place.

Both attributes are read-only. To set them during image creation, use
the IMG_DataWindow and IMG_ValidWindow attributes. Both expect
FuRectInt objects which are basically four integer pixel values for the
left, bottom, and right, top edges of a rectangle

Has to be set to true during a precalc request and will create an image
object with all its attributes but without allocating memory for the pixel
data. If you assign it the result of request:IsPreCalc() this will work for
both precalc and process requests.

Fuse Reference

81

Example

The following example Fuse takes two image inputs, creates a new image with exactly the same
attributes as the first Image input, then adds the two together.

function Process(req)
local imgl = InImagel:GetValue(req)
local img2 = InImage2:GetValue(req)

local out = nil -- fail if we don’t meet below conditions

-- Must have a valid operation function, and images must be same
dimensions

if (imgl.wWwidth == img2.Width) and (imgl.Height == img2.Height) then

out = Image({IMG_Like = imgl})

out:ProcessPixels(0,0, imgl.Width, imgl.Height, imgl, img2,
func)

end
OutImage:Set(req, out)

end

The following example creates an image from scratch using the full range of attributes for an
Image object.

function Process(req)
local realwidth = Width;
local realheight = Height;

-- We’ll handle proxy ourselves
Width = wWidth / Scale
Height = Height / Scale

Scale =1

local imgattrs = {
IMG_Document = self.Comp,
{ IMG_Channel "Red", },
{ IMG_Channel

"Green", 1},

{ IMG_Channel
{ IMG_Channel "Alpha", },
IMG_Width = Width,
IMG_Height = Height,

"Blue", },

IMG_XScale = XAspect,

IMG_YScale = YAspect,

IMAT OriginalWidth = realwidth,

IMAT OriginalHeight = realheight,

IMG Quality = not req:IsQuick(),
IMG_MotionBlurQuality = not req:IsNoMotionBlur(),
}

Fuse Reference

82

if not req:IsStampOnly() then
imgattrs.IMG_ProxyScale = 1

end

if SourceDepth ~= 0 then
imgattrs.IMG_Depth = SourceDepth

end

local img = Image(imgattrs) --Image Creation based on Attributes

local random = math.random

local p = Pixel({A=1})

for y=0,Height-1 do
if self.Status ~= "OK" then break end

for x=0,Width-1 do

p.R = random()
p.G = random()
p.B = random()

img:SetPixel(x,y, P)
end
end
OutImage:Set(req, img)

end

Tips for Image Constructor

An image created by using {IMG_Like = ..} is not cleared. Its pixels may contain old data from the
image cache. If you don't use the image as a target for methods that overwrite the pixels with valid
ones you have to clear it yourself using the Fill method.

If you want to work on a 32bit floating point version of the input image internally to prevent quality
loss when chaining multiple color corrections, use the Crop method to copy the original image to a
temporary one:

local orig = InImage:GetValue(req)
—-- copy to a float32 image
local temp32 = Image({IMG_Like = orig, IMG_Depth = 8})

orig:Crop(temp32, {CROP_XOffset 0, CROP _YOffset = 0})

--- do processing ---
-—- copy to an image of the original bit depth
out = Image({IMG_Like = orig})

temp32:Crop(out, {CROP_XOffset = 0, CROP_YOffset = 0})
OutImage:Set(req, out)

Single-channel images (IMG_Depth < 5, see Attributes) have an alpha channel only. Methods like
Gain() still need to be called with four parameters, the first three will be ignored.

Fuse Reference

83

Summary

The Merge method will merge a FG image over the Image calling the method. The foreground image
can also be offset, scaled and rotated. This function supports all of the apply modes and operations
supported by the Merge tool.

Usage
Image:Merge(image fg, table attributes)
fg (image, required)
The Image to be used as the foreground of the merge.

attributes (table, required)

A table containing entries which describe how the foreground will be merged over the
background. All values are optional, and an empty table will perform a default Additive merge of
the foreground over the background. Valid entries include:

MO_EdgeMode "Black" "Canvas" "Wrap" "Duplicate"

MO_ApplyMode "Normal" "Merge" "Screen" "Dissolve" "Darken" "Multiply" "ColorBurn"
"LinearBurn" "Darker Color" "Lighten" "ColorDodge" "LinearDodge"
"LighterColor" "Overlay" "SoftLight" "HardLight" "VividColor"
"LinearLight" "PinLight" "Difference" "Exclusion" "Hue" "Saturation"
"Color" "Luminosity" "Hypotenuse" "Geometric"

MO_ApplyOperator "Over" "In" "HeldOut" "Atop" "XOr" "Conjoint" "Disjoint" "Mask"
"Stencil" "Under"

MO_DoZ -

MO_UseOpenGL -

MO_MustDoCopy -

MO_BBoxOnly -

MO_FgZOffset -

MO_BgZOffset -

MQO_XOffset -

MO_YOffset -

MO_XAxis -

MO_YAxis -

MO_XSize -

MO_YSize -

MO_Angle -

MO_FgAddSub -

MO_BgAddSub -

Fuse Reference

84

MO_BurniIn -
MO_FgRedGain -
MO_FgGreenGain -
MO_FgBlueGain -
MO_FgAlphaGain -

MO_BgAlphaGain -

Example

This simple example additively merges the FG over the BG and provides

no further options.

FuRegisterClass("SimpleMerge", CT Tool, {

REGS_Category = "Fuses\\Samples",
REGS_OpIconString = "SMrg",
REGS_OpDescription = "Simple Merge",
}

function Create()

InBackground = self:AddInput("'Background",
LINKID DataType = "Image',
LINK_Main = 1,

}

InForeground = self:AddInput('Foreground",
LINKID DataType = "Image",
LINK Main = 2,
}

"Background",

"Foreground",

OutImage = self:AddOutput("Output", "Output", {

LINKID DataType = "Image",
LINK Main = 1,
}

end

function Process(req)
local bg = InBackground:GetValue(req)
local fg = InForeground:GetValue(req)

local out = bg:Copy()
out:Merge(fg, {MO_ApplyMode = "Merge'"})

OutImage:Set(req, out)

end

{

{

Fuse Reference

85

Summary

The MergeOf method will merge a FG image over the Image calling the method, and returns a new
Image containing the result. This is different from Image:Merge in that a new image is produced.
The foreground image can also be offset, scaled and rotated. This function supports all of the apply
modes and operations supported by the Merge tool.

Usage

image new_image = Image:MergeOf(image fg, table attributes)
fg (image, required)
The Image to be used as the foreground of the merge.

attributes (table, required)

A table containing entries which describe how the foreground will be merged over the
background. All values are optional, and an empty table will perform a default Additive merge of
the foreground over the background. Valid entries include:

MO_EdgeMode "Black" "Canvas" "Wrap" "Duplicate"

MO_ApplyMode "Normal" "Merge" "Screen" "Dissolve" "Darken" "Multiply" "ColorBurn
"LinearBurn" "Darker Color" "Lighten" "ColorDodge" "LinearDodge"
"LighterColor" "Overlay" "SoftLight" "HardLight" "VividColor"
"LinearLight" "PinLight" "Difference" "Exclusion" "Hue" "Saturation"
"Color" "Luminosity" "Hypotenuse" "Geometric"

MO_ApplyOperator "Over" "In" "HeldOut" "Atop" "XOr" "Conjoint" "Disjoint" "Mask"
"Stencil" "Under"

MO_DoZ -

MO_UseOpenGL -

MO_MustDoCopy -

MO_BBoxOnly -

MO_FgzOffset -

MO_BgZOffset -

MO_XOffset -

MO_YOffset -

MO_XAxis -

MO_YAXis -

MO_XSize -

MO _YSize -

MO_Angle -

MO_FgAddSub -

Fuse Reference

86

MO_BgAddSub -
MO_BurnlIn -
MO_FgRedGain -
MO_FgGreenGain -
MO_FgBlueGain -
MO_FgAlphaGain -

MO_BgAlphaGain -

Example

This simple example additively merges the FG over the BG and provides no further options.

FuRegisterClass("SimpleMerge", CT Tool, {

REGS_Category = "Fuses\\Samples",
REGS_OpIconString = "SMrg",
REGS_OpDescription = "Simple Merge",
3]

function Create()

InBackground = self:AddInput('Background", "Background", {
LINKID DataType = "Image",
LINK Main = 1,
h

InForeground = self:AddInput('Foreground", "Foreground", {
LINKID DataType = "Image",
LINK Main = 2,
}

OutImage = self:AddOutput('Output"”, "Output", {
LINKID DataType = "Image",
LINK Main = 1,
}

end
function Process(req)
local bg = InBackground:GetValue(req)

local fg = InForeground:GetValue(req)

local out = bg:Copy()
out = bg:MergeOf(fg, {MO_ApplyMode = "Merge"})

OutImage:Set(req, out)

end

Fuse Reference

87

Summary

The MultiProcessPixels function will process every pixel within a specified range of a source image
using the function provided as its last argument. This function is different from ProcessPixels in that
the processing will be separated into multiple threads, to take better advantage of multiprocessor
systems. The results will be written to a second destination image.

Usage
Image:MultiProcessPixels(function threadinitfunc, table globalenv, number x_start, number y_start,
number x_end, numbery_end [, Image srcimg1 [, ...]1, function processfunc)
threadinitfunc (function, required)
This argument must be provided, but can be either nil. or a function. This can be used to provide
a per-thread initialisation function, in case there is a need to calculate/remember something for
each thread.
globalenv (table, required)
The MultiProcessPixels process function does not have access to the variables in the global
environment - it only has access to values passed to it in this table.
x_start, y_start, x_end, y_end (integer, required)
These four values are used to specify the range of pixels in the source image which will be
affected by the process function. Usually x_start and y_start are set to 0, while x_end and y_end
are set to the width and height of the image, respectively.
source_image (image, required)
An Image object which will provide the pixels used for the calculations. At least one image is
required, but additional images can be specified as well.
process (function, required)

A function which will be executed for each pixel in the range specified by earlier arguments. The
function will be passed three or more arguments in the form function(x, y, p1, ...) where x and y
are the coordinates of the pixel and the remaining arguments are Pixel objects from each of the
source images.

Example

The following example implements a very simple Gain using MultiProcessPixels. Note that this is not
the recommended way to perform a Gain - see the Image:Gain function for a much faster approach.

FuRegisterClass("MultiPx1", CT Tool, {

REGS_Category = "Fuses\\Examples",

REGS_OpIconString = "M1tP",

REGS OpDescription = "Multi threaded pixel operations Fuse",
}

function Create()
InGain = self:AddInput('Gain", "Gain", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_Default = 2.0,

Fuse Reference

88

h

InImagel = self:AddInput("Input 1", "Inputl", {
LINKID DataType = "Image",
LINK Main = 1,
}

InImage2 = self:AddInput("Input 2", "Input2", {
LINKID DataType = "Image",
LINK Main = 2,
})

OutImage = self:AddOutput("Output”, "Output", {
LINKID DataType = "Image',
LINK_Main = 1,
})

end

-- pixel function
local func = function (x, y, pl, p2)
pl.R = gain * (pl.R - p2.R)
pl.G = pl.G - p2.G - bright
pl.B = var C * (pl.B - p2.B)
pl.A = pl.A - p2.A
return pl

end

function Process(req)
local imgl = InImagel:GetValue(req)
local img2 = InImage2:GetValue(req)

local ingain = InGain:GetValue(req).Value

local out = Image({IMG Like = imgl})

-— Must have a valid operation function, and images must be same
dimensions

if func and (imgl.Width == img2.Width) and (imgl.Height == img2.
Height) then

out:MultiProcessPixels(nil, {gain = ingain , bright=-0.3, var_ C=1.5},
0,0, imgl.wWwidth, imgl.Height, imgl, img2,
func)

end
OutImage:Set(req, out)

end

Fuse Reference

89

Summary

OMerge() is a destructive Simple additive merge. It has none of the advanced transformation options
found in Image:Merge - allowing only a simple offset of the foreground in x and y in pixels. This can be

used to reverse Crop Image

Usage

Image:OMerge(image foreground, number x_offset, number y_offset)
foreground (image, required)
An image object to use as the foreground for the merge.

x_offset, y_offset (number, optional)

A numeric value which specifies an offset for the Foreground in pixels.

Example

function Process(req)
local bg = InBackground:GetValue(req)

local fg = InForeground:GetValue(req)

local out = bg:Copy()
out:0Merge(fg, 0.75, 0.25)

OutImage:Set(req, out)

end

Summary

OXMerge() is a destructive Simple subtractive merge. It has none of the advanced transformation
options found in Image:Merge - allowing only a simple offset of the foreground in x and y in pixels.
This can be used to reverse Crop Image
Usage
Image:OXMerge(image foreground, number x_offset, number y_offset)

foreground (image, required)

An image object to use as the foreground for the merge.

x_offset, y_offset (number, optional)

A numeric value which specifies an offset for the Foreground in pixels.

Example

function Process(req)
local bg = InBackground:GetValue(req)
local fg = InForeground:GetValue(req)

Fuse Reference

20

local out

bg:Copy()

out:0XMerge(fg, 0.75, 0.25)

OutImage:Set(req, out)

end

Summary

The Resize function resizes an image to the dimensions specified in the functions attributes table. It

applies the resized result to the image provided as its first argument.

Usage

Image:Resize(image result, table options)

result (image, required)

The image object where the results of the resize will be applied. If none is provided, a new image

will be created and returned by the function.

attributes (table, required)

A table of options which describe the width, height, filter and other parameters used by the resize

function. See the Options section below.

Options
Name

RSZ_Filter

RSZ_Window

RSZ_Width
RSZ_Height
RSZ_Depth

RSZ_XSize

RSZ_YSize

Description

A string describing which filter method should be used for the resize.
Valid options are :

"TopLeft", "Nearest", "Box", "Linear", "BiLinear", "Quadratic", "BiCubic",
"Cubic", "BSpline", "CatmulRom", "Gaussian", "Mitchell", "Lanczos",
"Sinc", "Bessel"

A string that specifies the Windowing method to use with Lanczos and
Sinc filter methods. Not required for other filter types.

"Hanning", "Hamming", "Blackman", "Kaiser"

An integer specifying the width of the result image in pixels

An integer specifying the height of the result image in pixels

An integer specifying the color depth of the result image, Usually left nil.

A numeric value representing the horizontal scale of the result image.
Provides an alternative to RSZ_Width. A value of 1.0 represents 100%, or
no change.

A numeric value representing the vertical scale of the result image.
Provides an alternative to RSZ_Height. A value of 1.0 represents 100%, or
no change.

Fuse Reference

Example

function Process(req)

local bg = InBackground:GetValue(req)

local out = Image({IMG Like = img, IMG_Width = 1920, IMG Height = 1080}
bg:Resize(out, {RSZ_Filter = "Cubic", })

OutImage:Set(req, out)

end

Summary

The RecycleSAT function will reduce the reference count for an Images Summed Area Table (SAT) and
if the reference count reaches 0, it will release any memory consumed by the table. See UseSAT for
more information.

Usage
Image:RecycleSAT()

Summary

This function will sample an arbitrary position from the coordinates specified by the first two
arguments, and fill the Pixel object p with values from the sampled pixels. The X and Y arguments are
floating-point pixel coordinates, with 0,0 being the bottom-left corner and <width-1><height-1> being
the top-right corner. Unlike GetPixel, if the coordinates do not align exactly with a pixel then bilinear
filtering will be performed with neighbouring pixels.

If the coordinates provided are outside the actual bounds of the image, the return value will be a
black/transparent pixel. See SamplePixelW and SamplePixelD for functions that treat out of bound
sampling in different ways.

Usage
Image:SamplePixelB(number x, numbery, Pixel p)

X (number, required)

The x coordinate of the pixel to be sampled, where 0 is the left edge and <width-1> is the
right edge.

y (humber, required)

They coordinate of the pixel to be sampled, where 0 is the bottom edge and <height-1> is
the top edge.

p (pixel, required)
A Pixel object that will be filled with the results.

Fuse Reference

92

Summary

This function will sample an arbitrary position from the coordinates specified by the first two
arguments, and fill the Pixel object p with values from the sampled pixels. The X and Y arguments are
floating-point pixel coordinates, with 0,0 being the bottom-left corner and <width-1><height-1> being
the top-right corner. Unlike GetPixel, if the coordinates do not align exactly with a pixel then bilinear
filtering will be performed with neighbouring pixels.

If the coordinates provided are outside the actual bounds of the image, the return value will be the
pixel at the edge of the image. For example, if sampling a pixel at coordinates (-30.0, 50.0) the actual
pixel sampled would be (0.0, 50.0). See SamplePixelW and SamplePixelB for functions that treat out of
bound sampling in different ways.
Usage
Image:SamplePixelD(number x, numbery, Pixel p)

X (number, required)

The x coordinate of the pixel to be sampled, where 0 is the left edge and <width-1> is the

right edge.

y (number, required)

They coordinate of the pixel to be sampled, where 0 is the bottom edge and <height-1> is
the top edge.

p (pixel, required)
A Pixel object that will be filled with the results.

Summary

This function will sample an arbitrary position from the coordinates specified by the first two
arguments, and fill the Pixel object p with values from the sampled pixels. The X and Y arguments are
floating-point pixel coordinates, with 0,0 being the bottom-left corner and <width-1><height-1> being
the top-right corner. Unlike GetPixel, if the coordinates do not align exactly with a pixel then bilinear
filtering will be performed with neighbouring pixels.

If the coordinates provided are outside the actual bounds of the image, the coordinates will wrap
around the image. For example, if sampling a pixel at coordinates (-30.0, 50.0) the actual pixel sampled
would be (width-30.0, 50.0). See SamplePixelD and SamplePixelB for functions that treat out of bound
sampling in different ways.
Usage
Image:SamplePixelD(number x, numbery, Pixel p)

X (number, required)

The x coordinate of the pixel to be sampled, where 0 is the left edge and <width-1> is the
right edge.

Fuse Reference

93

y (number, required)

They coordinate of the pixel to be sampled, where 0 is the bottom edge and <height-1> is
the top edge.

p (pixel, required)

A Pixel object that will be filled with the results.

Summary

This function will sample an area of the image, using the coordinates specified by the first two
arguments, and fill the Pixel object p with the average of the pixels within the area. If the coordinates
provided include pixels outside the actual bounds of the image, the pixels will be considered

to be black.

See SampleAreaW and SampleAreaD for functions that treat out of bound sampling in different ways.

Before using the SampleArea methods, initial setup must be done, which pre-calculates values needed
by the area sampling functions. Be aware however area sampling is a very memory intensive approach
and should only be used if "full quality" is required. The setup is done using the UseSAT()function. This
maintains a reference count, and so an equivalent RecycleSAT() must be done once you're finished
area sampling. Without the RecycleSAT(), Fusion will not be able to free up the pre-calculated values
until the whole Image itself is destroyed.

Usage
Image:SampleAreaB(number x1, number y1, number x2, number y2, number x3, number y3, number x4,
number y4, Pixel p)

x1, X2, X3, x4 (humber, required)

The x coordinate of the pixel to be sampled.

y1,y2,y3, y4 (number, required)

They coordinate of the pixel to be sampled.

p (pixel, required)

A Pixel object that will be filled with the results.

Summary

This function will sample an arbitrary position from the coordinates specified by the first two
arguments, and fill the Pixel object p with values from the sampled pixels. The X and Y arguments are
floating-point pixel coordinates, with 0,0 being the bottom-left corner and <width-1>,<height-1> being
the top-right corner. Unlike GetPixel, if the coordinates do not align exactly with a pixel then bilinear
filtering will be performed with neighbouring pixels.

If the coordinates provided are outside the actual bounds of the image, the return value will be the
pixel at the edge of the image. For example, if sampling a pixel at coordinates (-30.0, 50.0) the actual
pixel sampled would be (0.0, 50.0).

See SamplePixelW and SamplePixelB for functions that treat out of bound sampling in different ways.

Fuse Reference

94

Before using the SampleArea methods, initial setup must be done, which pre-calculates values needed
by the area sampling functions. Be aware however area sampling is a very memory intensive approach
and should only be used if "full quality" is required. The setup is done using the UseSAT()function.

This maintains a reference count, and so an equivalent RecycleSAT() must be done once you're
finished area sampling. Without the RecycleSAT(), Fusion will not be able to free up the pre-calculated
values until the whole Image itself is destroyed.

Usage
Image:SampleAreaD(number x, numbery, Pixel p)
X (number, required)
The x coordinate of the pixel to be sampled, where 0 is the left edge and <width-1> is the
right edge.
y (number, required)
They coordinate of the pixel to be sampled, where 0 is the bottom edge and <height-1> is
the top edge.
p (pixel, required)
A Pixel object that will be filled with the results.

Summary

This function will sample an area of the image, using the coordinates specified by the first two
arguments, and fill the Pixel object p with the average of the pixels within the area. If the coordinates
provided include pixels outside the actual bounds of the image, the pixels will be sampled from the
opposite side of the image.

See SampleAreaB and SampleAreaD for functions that treat out of bound sampling in different ways.

Before using the SampleArea methods, initial setup must be done, which pre-calculates values needed
by the area sampling functions. Be aware however area sampling is a very memory intensive approach
and should only be used if "full quality" is required. The setup is done using the UseSAT()function. This
maintains a reference count, and so an equivalent RecycleSAT() must be done once you're finished
area sampling. Without the RecycleSAT(), Fusion will not be able to free up the pre-calculated values
until the whole Image itself is destroyed.

Usage

Image:SampleAreaW(number x, numbery, Pixel p)
x1, X2, X3, x4 (humber, required)
The x coordinate of the pixel to be sampled.
y1,y2,y3, y4 (number, required)
They coordinate of the pixel to be sampled.
p (pixel, required)
A Pixel object that will be filled with the results

Fuse Reference

95

Summary

The Saturate function adjusts the saturation of the image. The result is applied directly to the Image

object which calls the function. This function does not return a value.
Usage
Image:Saturate(number r, number g, number b)

number r, g, b (number, required)

The amount by which to adjust the saturation. A value of 1.0 means no change, above 1 is more
saturated and less than 1 is desaturated.

Example

A very simple saturate tool.

FuRegisterClass("SimpleSaturate", CT Tool, {

REGS_Category = "Fuses\\Examples",
REGS_OpIconString = "Sst',
REGS_OpDescription = "SimpleSaturate",
}

function Create()
InSat = self:AddInput('Saturation", "Saturation", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_Default = 1.0,

h

InImage = self:AddInput("Input”, "Input", {

LINKID DataType = "Image',
LINK_Main = 1,
})

OutImage = self:AddOutput("Output", "Output", {

LINKID DataType = "Image",
LINK Main = 1,
})

end

function Process(req)

local img InImage:GetValue(req)

local sat

InSat:GetValue(req).Value

local newimg img:Copy()

newimg:Saturate(sat, sat, sat) -- This could also desaturate a
single color

Fuse Reference

96

OutImage:Set(req, newimg)

end

Summary

The SetCanvasColor function is used to set the canvas color values of an Image.

The canvas color is the "default" pixel color, and is used for any part of the image which is not explicitly
defined by pixels. This is usually black/transparent, but can be different after certain operations, such
as inverting the image.

Usage
SetCanvasColor(object pixel)
pixel
The Pixel object that is used to set the color values of the image’s canvas.

Example

local p = Pixel()

p:Clear()

img:SetCanvasColor(p)

print("Image canvas is now black/transparent")

Summary

The SetPixel function is used to set the value of a specific pixel in an Image. This uses actual pixel
coordinates, and must always be within image bounds.

Usage

Image:SetPixel(integer x_position, integer y_position, object pixel)
X_position
The position of the pixel to set on the x axis

y_position

The position of the pixel to set on the y axis
pixel

The pixel object to be assigned to the image.

Example

The following example is taken from the SourceTest.Fuse example found at Example_Fuses
local img = Image(imgattrs)

local random = math.random -- faster in a local

Fuse Reference

97

local p =

Pixel({A=1})

for y=0,Height-1 do

if self.Status ~= "OK" then break end

for x=0,Width-1 do

end

end

p-R = random()
p.-G = random()
p.-B = random()

img:SetPixel(x,y, P)

OutImage:Set(req, img)

Summary

The Transform method can be used to change the scale, angle and position of an image. The results of

the transform will be copied into the image provided as the first argument. If the first argument is set

to nil, the method will return a new Image object containing the results.

The defaults for XF_XOffset and XF_YOffset are zero, so if you don't want to do translation you still

need to specify 0.5 for each one if you don’t want your image to end up in the bottom left corner.

Usage

image = Image:Transform(image dest_image, table taglist)

dest_image (image, required)

The image to write the transform results into. May be nil, in which case an image is created.

taglist (table, required)

The taglist argument is a table containing entries which describe the image transformation.

Name
XF_Angle
XF_XAXxis
XF_YAxis

XF_EdgeMode

XF_XOffset
XF_YOffset
XF_XSize

XF_YSize

Description

The angle of the transformed image in degrees.

The X coordinate for the transformations axis (or pivot).
The Y coordinate for the transformations axis (or pivot).

A string which describes which technique to use to handle edges of
the image.

Valid options are "Black", "Canvas", "Wrap", or "Duplicate".
The x coordinate for the transformations center.

The y coordinate for the transformations center.

The scale of the transformed image along the x axis.

The scale of the transformed image along the y axis.

Fuse Reference

98

Return

The results of the transformation are returned as an Image object, or nil if the operation failed. If

dest_image was provided, that will be returned.

Example

The following example is the process() event from the Fuse.

edge modes = {"Black", "Canvas", "Wrap", "Duplicate"}

function Process(req)

local img = InImage:GetValue(req)
local center = InCenter:GetValue(req)
local pivot = InPivot:GetValue(req)

local sizex = InSizeX:GetValue(req).Value
local sizey = InSizeY:GetValue(req).Value
local angle = InAngle:GetValue(req).Value
local edges = InEdges:GetValue(req).Value

if locked then
sizey = sizex

end

out = img:Transform(nil, {
XF_XOffset = center.X,
XF_YOffset = center.Y,
XF_XAxis = pivot.X,
XF_YAxis = pivot.Y,
XF_XSize = sizex,

XF_YSize

sizey,

XF Angle = angle,

XF_EdgeMode = edge_modes[edges+l],
}

OutImage:Set(req, out)

end

Summary

The UseSAT function must be called before using the SampleArea functions; SampleAreaB,
SampleAreaD, and SampleAreaW. It will create a Summed Area Table (SAT), containing pre-calculated
values for the entire image. If the SAT has already been created for the Image object this function will
increase the reference count for the SAT. This function does not return a value - the SAT is attached
directly to the Image object.

When the SAT is no longer required, use the RecycleSAT function to release the memory consumed by
the table.

Fuse Reference

929

Usage
Image:UseSAT()

Request

Methods

IsStampOnly

Returns a boolean which indicates whether the current request is in
Proxy mode.

IsQuick

Returns a boolean which indicates whether the current request is
in HIQ mode.

IsNoMotionBlur

Returns a boolean which indicates whether the current request should
include motion blur.

GetTime Returns the current frame of the request.
Members
Time The current frame of the request.
BaseTime Returns a boolean which indicates whether the current request is

in HiQ mode.

Tips for Request

IsPreCalc():

Returns true if the current request is a precalc request.

GetFlags(): .

Get all the request’s flags (IsStampOnly, IsQuick, ...) as bits of an integer

To use DoD in a fuse, you will need these methods

Name

Description

GetInputDoD(inp):

Returns the specified input’'s DoD. You mustn't access pixel coordinates
outside of this when working on the input image data. The canvas color
value should be substituted instead, something that GetPixel() won't do
for you automatically.

GetRol():

Returns the requested region of interest. You may return an image with
a DoD that is larger or smaller, but if you want to gain as much speed
as possible, don't waste time calculating pixels outside of this. During

precalc requests, this is nil. For regular process requests, this should end

up as the ValidWindow attribute of your output image.

Both functions return ImageDomain objects. They are similar to FuRectInt in that they store

information about the area that contains valid pixel data. You can access these coordinates using

Jleft, .bottom, .right and .top as if it was a FuRectInt.

Fuse Reference

Pixel

Methods

‘ Clear Zeroes all pixel values to black.

Members
R Red
G Green
B Blue
A Alpha
z Depth
u U texture coordinate
\Y V texture coordinate
W W texture coordinate
Coverage Fraction of pixel covered by foreground object
ObjectID Unique integer identifier for the pixel's object
MateriallD Unique integer identifier for the pixel's material
NX X component of pixel’s surface normal vector
NY Y component of pixel's surface normal vector
NZ Z component of pixel's surface normal vector
BgR Red component of background pixel fragment
BgG Green component of background pixel fragment
BgB Blue component of background pixel fragment
BgA Alpha component of background pixel fragment
VectorX X component of pixel's motion vector
VectorY Y component of pixel's motion vector
BackVectorX X component of pixel's reverse motion vector
BackVectorY Y component of pixel's reverse motion vector
DisparityX X component of pixel’s Stereo Disparity difference
DisparityY Y component of pixel's Stereo Disparity difference
PositionX X position of pixel in 3D world space
PositionY Y position of pixel in 3D world space
PositionZ Z position of pixel in 3D world space

Other

No attributes.

Fuse Reference

101

ColorMatrixFull

Summary
The ColorMatrixFull function is used to create a Matrix object with four elements, used to manipulate

the Red, Green, Blue and Alpha channels. For a three element Matrix, see ColorMatrix instead.

For a description of what a ColorMatrix is, and where it might be useful, see : Using the ColorMatrix.

Usage
ColorMatrixFull()

Example

The following example uses a ColorMatrixFull object to perform a contrast operation on an image.

Introduction

In Using the Matrix we saw how a Matrix object could be used to collect multiple spatial
transformations on an image. In this article we explore how a variant on that technique can also be
used to perform color operations.

The key to this approach is that you consider the values in the red green and blue channels as
coordinates in x, y and z instead. Once you do that, it becomes apparent that operations like Gain are
really no different than spatial transformations like Scale.

In fact, Gain is identical to scaling the image, while brightness is nothing more than a translation of
the image. A contrast operation is nothing more than a scale centered around 0.5 instead of 0.0. Even
the conversion to YUV can be represented in this way. This allows us to build up several ‘linear’ color
operations into one operation, and then apply them as a single pass. We can even use a matrix to
swap channels, or mix them together.

Non linear color operations (like gamma) cannot be represented this way in a Matrix.

Fusion provides a ColorMatrix object for RGB image operations, and the ColorMatrixFull object for
RGBA images.

The Math of the Matrix

The ‘ColorMatrix’ is a 4x4 matrix, so you can use it to affect RGB. The ‘ColorMatrixFull"is a 5x5 matrix,
which adds Alpha to the RGB color channels.

In the terminology of Matrix mathematics, an "identity matrix" is one that doesn’t change anything.
A 4x4 identity matrix would look like:

o o o +~ R~
o o + o u

b
0
0
1
0

= O O O

Fuse Reference

102

We could say that uppercase R, G and B are going to be the results, and lowercase r, g and b are the

source/input values. You can completely ignore the bottom row, but not the right column.

So just looking at the first row, it says the R result will contain 1 ofr, 0 ofgandOofb(or1*r+0*
g+ 0 * b). And the second row says the R result will contain 0 of r, 1 of g and 0 of b. And similar for

the 3rd row.

So far we justignored the right column, but you can consider the source/input value for the right
column to be 1.0. So that would make the first row of the matrix produce results forR=1*r+0* g+
0*b+0*1.0.

With that, we can do "brightness" by increasing or decreasing how much of the 1.0 input value is
included in the result. Let's say we wanted a brightness of 0.5 in the R result. That would make the R

row of the matrix:

r g b 1.0
R 1 0 0 0.5

R =1*r+0%*g+0=*Db+ 0.5 * 1.0
=1 *r + 0.5 * 1.0
=r + 0.5

If instead we wanted a "gain" of 2.0 (so we want the R result to have 2 times r), that would make the R

row of the matrix:

R =2*r1r+0%g+0*b+0 * 1.0

=2 * r

Say we wanted to put g into the resulting R, (copying the green channel into the Red channel of the

output) then the first row of the matrix would be:

R O 0 0

B =0*r+1%g+0%*b+0* 1.0
= 1*g
=g

If you wanted R to be the "luminance" of rgb, the first row of the matrix would be:

r g b 1.0
R 0.299 0.587 0.114 0

o
1

0.299 * r + 0.587 * g + 0.114 * b + 0.0 * 1.0

0.299 * r + 0.587 * g + 0.114 * b

Fuse Reference

103

If we want R to be an inverted version of r, we want to do "1.0 - r", which means we want to make r
negative (gain of -1.0) and then add 1.0 (brightness of 1.0), so the first row of the matrix would be:

R =-1**r+0*g+0=*Db + 1* 1.0
= -1 *r + 1 * 1.0
= -r + 1
= 1 -r

Using Methods

The ColorMatrix and ColorMatrixFull objects expose several methods that can make common
operations much simpler. For example, we can use the Scale function to simplify the Gain example in
the section above.

img = InImg:GetValue(req
m = ColorMatrix

m:Scale(0.5, 0.5, 0.5

The advantage to this approach is that the Scale method takes care of preserving the existing
transformations applied to the Matrix. Our original example would have overwritten any existing
transformations.

Using a similar technique, the Offset method can be used to perform a brightness operation.

m = ColorMatrixFull

m:0ffset(r, g, b, a

You can combine operations by simply applying them in turn.

m = ColorMatrixFull
m:0ffset(-0.5, -0.5, -0.5, 0
m:Scale(l, 0.5, 0.25, 1
m:0ffset(0.5, 0.5, 0.5, 0

You can also combine the operations in separate matrices by multiplying them together.

ml = ColorMatrixFull
ml:0ffset(-0.5, -0.5, -0.5, O

m2 = ColorMatrixFull
m2:Scale(l, 0.5, 0.25, 1

m = ml * m2

You can find a complete list of the methods available at the ColorMatrix and ColorMatrixFull object
reference pages.

Fuse Reference

104

Editing the Matrix

Sometimes it is necessary to manipulate the matrix directly. Each matrix object exposes individual
elements as properties. To access the first element in the first row, we would use the property matrix.
n11, the second element would be matrix.n21, then matrix.n31 and so on. This is best demonstrated
by the following code, which would print a table of all the elements in a 4x4 ColorMatrix, organized as
in our examples above.

m = ColorMatrix
vy Yet, Ve, Mg, A
"R", m.nll, m.n21, m.n31, m.n4l
"G", m.nl2, m.n22, m.n32, m.n42
"B", m.nl3, m.n23, m.n33, m.n43
"aA",

m.nl4, m.n24, m.n34, m.n44

The following function could be used to copy a ColorMatrix.

CopyColorMatrix(m

new_m = ColorMatrix
new m.nll = m.nll
new_m.n2l = m.n2l
new m.n31 = m.n31
new_m.n4l = m.n4l
new_m.nl2 = m.nl2
new_m.n22 = m.n22
new _m.n32 = m.n32
new_m.n42 = m.n42
new_m.nl3 = m.nl3
new_m.n23 = m.n23
new_m.n33 = m.n33
new_m.n43 = m.n43

new_m

The following could be used to apply a gain of 0.5 to each pixel in an image.

img = InImg:GetValue(req

m = ColorMatrix

m.n4l = 0.5

m.n42 = 0.5

m.n43 = 0.5
Applying the matrix

Once the matrix has been created, you can apply it to the image using the Image objects ApplyMatrix
and ApplyMatrixOf functions.

Fuse Reference 105

Drawing, Text, Shapes

There are basic drawing, shape filling, outlines and text with different graphic colors and styles.

The process of shape rendering is similar to 3D programming using Contexts. Define a context,
add shapes, color and styles, and render into an image. Once a context is created arguments and
parameters cannot be removed, only replaced. The context will render to an image using PutTolmage.

Shapes Creation

Shapes are linked lists of line segments. Define by shape by setting a pointer to Shape(), MoveTo() the
start location, and LineTo() all other points in the shape.

Summary

This creates a shape link list table to add points and line segments.

Usage
Shape()
Example

sh = Shape

Summary

AddRectangle will create a rectangle shape with round corners.

Usage
shape:AddRectangle (float Left, float Right, float Top, float Bottom, float Corner Radius, float Precision)

— Leftedge

— Right edge

— Top edge

— Bottom edge

— Corner Radius zero is sharp corner

— Precision Anti Aliasing oversampling

Example

sh:AddRectangle -0.1, 0.1,- 0.1, 0.1, 0.01, 8

Fuse Reference

106

Summary

This sets a pointin XY space

Usage

shape:MoveTo(number X, numberY)

Example

sh:MoveTo(0.101649485528469, -0.175463914871216

Summary

This defines a line segment from the previous defined point. Use MoveTo to define the first point.

Usage

shape:LineTo(number X, numberY)

Example

sh:MoveTo(0.101649485528469, -0.175463914871216
sh:LineTo(0.132989693308614, -0.175876285507507
sh:LineTo(0.127628862857819, -0.19814433157444
sh:LineTo(0.115670099854469, -0.204742267727852
sh:LineTo(0.107961280143138, -0.197474031147269

sh:Close -- Close shape to the origin point

Summary

This defines a Bezier curve point and handles.

Usage
shape:BezierTo(number pointX, number pointY, number handle1X, number handle1Y, number handle2X,
number handle2Y)

Example

shbz:BezierTo(-0.053, 0.097, 0.000, 0.096, 0.055, 0.092
shbz:BezierTo(0.113, -0.004, 0.082, -0.053, 0.057, -0.103
shbz:BezierTo(-0.055, -0.097, -0.080, -0.048, -0.108, 0.002

shbz:Close

Summary

This defines a Conic curve point2.

Fuse Reference

107

Usage

shape:ConicTo(number point1X, number point1Y, number point2X, number point2Y)

Example

shcon:ConicTo(-0.053, 0.097, 0.000, 0.096
shcon:ConicTo(0.113, -0.004, 0.082, -0.053
shcon:ConicTo(-0.055, -0.097, -0.080, -0.048
shbz:Close

Summary

Shapes can be closed from the first point to last point

Usage
Close()

Example

sh = Close

Text Shape

Summary

This will get a Font glyph shape and put in a shape object

Usage

Shape =Fontmetrics:GetCharacterShape(string ch, false)

Example

sh = tfm:GetCharacterShape(ch, false

Summary

The font typeface

Usage

Shape =Fontmetrics:GetCharacterShape(string ch, false)

Example

font = TextStyleFont(font, style

Fuse Reference

108

Summary

This will get a Font character and put in a shape object
Usage
Shape =Fontmetrics:GetCharacterShape(string ch, false)

Example

tfm = TextStyleFontMetrics(font

Summary

This will get a Font character and put in a shape object

Usage
Shape =Fontmetrics:GetCharacterShape(string ch, false)
Example

cw = tfm:CharacterWidth(ch)*10*size

Summary

This will get a Font character and put in a shape object

Usage

Shape =Fontmetrics:GetCharacterShape(string ch, false)

Example

x_offset = tfm:CharacterKerning(prevch, ch)*10*size

Summary

This will define the shape as an outline, with a thickness, and joint type to define the elbows at the end
of each segment. Windmode defines the method of dealing with overlapping lines. Line type defines
whether the outline is solid or broken up as dots and dashes.

Usage

shape sh = shape: OutlineOfShape(float thickness, arg linetype, arg jointype, integer precision,
arg windmode, integer flatten precision)

thickness

This defines the thickness of the line, a value of 0.001 is 1/1000 the width of the image.

Fuse Reference

109

linetype

— OLT_Solid

— OLT _Dash

— OLT_Dot

— OLT_DashDot

— OLT _DashDotDot

jointype

— OJT_Bevel
— OJT_Miter
— OJT_Round

precision

— Setto 8

windmode

— SWM_NoChange
— SWM_Normal
— SWM Clear

— SWM_Solid

flattenprecision

— Setto 8

Example

sh = sh:OutlineOfShape(thickness, "OLT Solid", "OJT Bevel", 8, "SWM Normal", 8

ImageChannel

Summary

ImageChannel is a monochrome buffer that you can draw shapes on. It is connected to an actual
Image object, you just need to call PutToImage(mode, channelstyle) to "bake" the buffer onto it. While
doing so, you have the option to overwrite the image (mode = "CM_Copy") or merge the buffer to
what's already there ("cM_Merge"). To put the ImageChannel onto the image, Fusion also needs to
know what color you'd like to paint in. This is done with a ChannelStyle object which stores attributes
like color and opacity but also fills gradient or softness.

This allows you to reuse an ImageChannel (a "drawing") multiple times. By changing the ChannelStyle
each time you call PutTolmage() you can create a semi-transparent red and a blurry green version,
for example.

The color, gradient and softness options at the bottom of the shading tab of the Text+ tool basically

expose the things you can do with a ChannelStyle.

Fuse Reference

110

A Shape object is one or several vector-based polygons or a collection of lines and beziers. It can be
transformed without quality loss since it only gets rendered by calling Image Channel’s FillShape()
method. The Shape class provides methods to expand or shrink the shape or to create an outline of
the polygon you have drawn. In fact, since shapes are always rendered by filling them, you need to
create an outline version of the shape with a defined thickness and line style (e.g. dotted or dashed)
and then fill this shape to get your outline. These features can be found in most mask tools as well as
the Text+ tool.

Usage

ImageChannel(image out, number sampling)

Members
Image Points to the image for rendering
Sampling This define the amount of over sampling
Example
ic = ImageChannel(out, 8

Styles

Summary

FillStyle sets up a "look" for rendering shapes into images.

Usage
FillStyle()

Example

fs = FillStyle

Summary

SetFillStyle associates the style look to the Image Channel Image

Usage
imageChannel:image:SetFillStyle(fillstyle)

Example

ic:SetStyleFill(fs

Fuse Reference

11

Summary

ShapefFill associates the shape to the Image Channel Image.

Usage
ImageChannel image:ShapeFill(Shape)

Example

ic:ShapeFill(sh2

Summary

This will render the shape into an image, using the styles set.

Usage
ImageChannel:PutTolmage(table Attributes, ChannelStyle cs)

Attributes
Name Description
"CM_Merge" This will merge the rendered shape into the image
"CM_Copy" This will replace the image with the rendered shape
Example

ic:PutToImage("CM Merge", cs

ChannelStyle

A ChannelStyle object stores properties like color, opacity and softness that are used to render a
shape into ImageChannel into an image. This way, you can reuse an image style for multiple calls to
ImageChannel:PutTolmage().

Summary

Defines a ChannelStyle object. Using.the commands to add color and look parameters listed below

Usage
ChannelStyle()

Example

cs = ChannelStyle

Fuse Reference

112

Summary

Sets the Color RGBA values to the ChannelStyle object

Usage

ChannelStyle:Color = Pixel {number R, number G, number B, number A}
Example

cs.Color = Pixel{R=r , G=g , B=b, A = 1}

Summary

Sets the type of Blur filter to process ChannelStyle object

Usage
ChannelStyle BlurType = "Attribute"

Attribute

— "BT_Box"

— "BT_Soften"

— "BT_Bartlett"

— "BT_Sharpen"

— "BT_Gaussian"

— "BT_FastGaussian"
— "BT_Hilight"

— "BT_Blend"

— "BT_Solarise"

— "BT_MultiBox"

Example

¢s.BlurType = "BT Bartlett" -- BT_Box, BT_Bartlett, BT_MultiBox, BT_Gaussian

Summary

Sets the amount of Blur in the X and Y directions

Usage

ChannelStyle.SoftnessX = number Blur

ChannelStyle.SoftnessY = number Blur

Example
cs.SoftnessX = 10.0
cs.SoftnessY = 10.0

Fuse Reference

113

Summary

Sets the amount of Glow for the blur. 0.0 will be no glow, 1.0 is full glow, used in conjunction with
SoftnessBlur, see the glow tool for behavior.

Usage

ChannelStyle.SoftnessGlow = number Glow

Example

cs.SoftnessGlow = 0.95

Summary

Sets the amount of Blend between the Glow image and the original image.

Usage

ChannelStyle.SoftnessBlend = number Blur

Example

cs.SoftnessBlend = 0.3

Shape Transforms

Shapes can be moved, rotated, scaled, sheared and perspective projected via matrix math.

Summary

Matrix4 defines a 4x4matrix which has XYZ position, rotation, and scale

Usage

To create a Matrix4 object, you can call:

—-- <table> is a table of 16 elements

mat = Matrix4(<table>)

To convert a Matrix4 object back to a table (for printing etc...), call:

<table> = mat:GetTable()

Most matrix methods modify the existing matrix object and "add" their transformations to it (e.g.
Move(), Scale(), ..). The Inverse() and Transpose() methods, however, simply return the desired matrix
without modifying the object itself.

Fuse Reference

114

The Matrix4 class has overloaded operators in LUA, which means you can multiply and add matrices

by simply writing

matl = Matrix4()
mat2 = Matrix4()
mat3 = matl * mat2 -- transform defined by matl followed by

transform defined by mat2

Matrix Math and Fusion’s Coordinate System

In Fusion'’s coordinate system, 1.0 denotes full width (e.g. 1920 pixels in HD) but also full height (e.g.
1080 pixels). The coordinate system is squashed. The Matrix4 and Shape objects, however, work with
coordinates that are scaled the same way in both directions based on the Width being 1.0.

The horizontal image size was 1920, a Y value of "1" would also stand for 1920 vertical pixels. If you
want to move a shape to the coordinates defined by the user using an OffsetControl input, you need
to account for this. The formula to convert y-coordinates for use with Matrix4 is:

matrix_Y = fusion_Y * (img.Height * img.YScale) / (img.Width * img.XScale)

(img is the destination image and is used to retrieve the dimensions and pixel aspect ratio)

Summary

Sets the Matrix to a default state, with position and rotation at 0.0 and scale at 1.0

Usage
matrix:1dentity()
Example

mat:Identity

Summary

These functions will rotate the matrix around each axis X,Y or Z, with the angle defined in degrees.
Usage

matrix:RotX(float angle)

matrix:RotY(float angle)

matrix:RotZ(float angle)

Example

mat:RotZ(rotation

Fuse Reference

115

Summary

This function will rotate the matrix around a defined axis, with the angle defined in radians.

Usage

matrix:RotAxis(float axisX, float axisY, float axisZ, float radians)

Example

mat:RotAxis(0.0, -1.0. 0.0, rotation

Summary

This function will rotate the matrix around each axis, with the order of operations set by the
Order argument.

Usage

matrix:Rotate(float angleX, float angleY, float angleZ, arg Order)

Arguments
— Order of operations
— RO_ZYX
— RO_YzZX
— RO_ZXY
— RO_XZzZY
— RO_YXz
— RO_XYZzZ

Example

mat:RotAxis(30.0, -14.0. 10.0, RO_ZXY

Summary

This function will apply a translation to the matrix.

Usage
matrix:Move(float X, float Y, float Z')

Example

mat:Move(0.75, 0.15, O

Fuse Reference

116

Summary

This function will apply a scale to the matrix.

Usage
matrix:Scale(float X, float, float Z')

Example

mat:Scale(0.75, 0.75, 0.75

Summary

This function will apply a Shear to the matrix along the XYZ axis

Usage
matrix:Shear(float X, float Y, float Z)

Example

mat:Shear(0.75, 0.0, 0.0

Summary

This function will apply 3D perspective to a matrix based on a Field of View

Usage
matrix:Project(float FoV')

Example

mat:Project(fov

Summary

This function will apply 3D perspective to a matrix based on a Field of View, Aspect of the view window,
and the clipping plains.

Usage

matrix:Perspective(float fovy, float aspect, float zNear, float zFar)

Example

mat:Perspective(fovy, aspect, zNear, zFar

Fuse Reference

117

Summary

This function will apply the transformation matrix to the shape.

Usage

shape =shapeTransformOfShape(matrix)

Example

sh =sh:TransformOfShape(mat

View LUT Plugin

ViewLut Plugins are used in the view to adjust color while being displayed. For example, a comp is
processing true linear and displaying as sRGB in the view to match the monitor, View Luts do this
conversion on the GPU using GLSL shaders. There are a number of common built-in ViewLuts, and
Fuse View Lut Plugins can be developed to custom view looks.

ViewlLut Creation

Summary

The FuRegisterClass function is executed when Fusion first loads the Fuse tool or ScriptViewShader.
The arguments to this function provide Fusion with the information needed to properly present the
tool for use by the artist. Fusion must be restarted before edits made to this function will take effect.

The FuRegisterClass function is required for all Fuse tools and ScriptViewShaders, and generally
appears as the first few lines of the Fuse script.

Usage

FuRegisterClass(string name, enum ClassType, table attributes)

Returns

This event function does not return a value.

Arguments
name(string, required)

The name argument is a unique identifier that is used to identify the plugin to Fusion. It is also
used as the base for the tool's default name. For example, the first instance a ScriptPlugin with the
name ‘Bob’ would be added to the flow as Bob1.

ClassType (enum, required)

The ClassType is a predefined variable which identifies the type of Fuse for Fusion. For View LUT
plugins, the value to use for the ClassType is CT_ViewLUTPlugin.

Fuse Reference

118

attributes (table, required)

The attributes table defines all the remaining options needed to define a Fusion tool. There

are a wide variety of possible attributes, and not all are required. The following table lists the
most common attributes, and their expected values. A more comprehensive list can be found at
FuRegisterClass Attributes.

Name Description

REGS_Category Required. A string value which sets the category a tool will appear in.
For example, REGS_Category = "Script" will place the tool in the
Scripts category of the tool menu. If the category does not exist, it will
be created to hold the tool. Nested Categories can be defined using a
\ character as a seperator. For example, REGS_Category = "Script\\
Color" will create a Color category under the Script category of
the tool menu. Remember to use \\ instead of \ in a regular string,
as \is considered an escape character unless the [[]] raw string
delimiters are used.

REGS_Name Optional. Only needed if the ViewShader's displayed name is different
to its unique ID.

Example

FuRegisterClass("GammaVSFuse", CT ViewLUTPlugin, { -- ID must be unique
REGS_Name = "Gamma ViewShader",

REGS_Category = "ViewShaders",
}

ViewlLut Ul

Summary

The Create event function is executed when the ScriptViewShader is selected from the list of LUTs,
once LUTs are enabled. Its job is to create any user controls, and to do any once-off setup for
anything needed repeatedly later on. All objects created here are automatically destroyed when the
ViewShader itself is destroyed.

The Create function does not require or use any arguments and does not return a value.
While all ScriptViewShaders must provide a Create event function, that function can be empty.

Adding controls is done with self:AddInput(), in the same fashion as with Fuse tools. Note that
ViewShaders have no Output object, so no AddOutput() call is required.

Usage

Create()

Arguments

None

Fuse Reference

119

Example

function Create()

InGamma = self:AddInput("Gamma", "Gamma", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_Default = 1.0,
ICD MaxScale = 5.0,
9]

InAlphaGamma = self:AddInput('Alpha Gamma", "AlphaGamma", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_Default = 1.0,
ICD MaxScale = 5.0,
3]

end

-- This is called when the shader is created

-- img may be nil

function SetupShadeNode(group, req, img)
-- pass group, name, params string, and shader source
return ViewShadeNode(group, "GammaFuse", params, shader)

end

ViewlLut Process

Summary

The SetupShadeNode event is called when Fusion needs to rebuild the display view's LUT shader
chain, for example when the user changes the selected LUTs.

The fuse should construct a ViewShadeNodeobject, giving it a GLSL shader program in a string, then
add any run-time parameters that will be passed to the shader, and return the object. A Request
object containing the current control settings is passed in, along with the image being displayed
(which may be nil), if required.

Usage

SetupShadeNode(group, request, image)

Arguments
group (ViewShadeNodeGroup object)

The group of shaders that this ViewShader will belong to. Needed for constructing a ViewShadeNode.

request (Request object)
A Request object containing the current control values.

image (Image object)
The source Image that will be given to the shader.

Fuse Reference

120

Returns

The function should return a freshly-created ViewShader object.
Example

-- Here’s the GLSL shader itself:

-- params for the shader:

params =

[

float Gamma // enable switches (0 or 1), one per line

float Alphagamma
11

shader =

[l

void ShadePixel(inout FuPixel f)

{
// get source pixel
EvalShadePixel(f);
// apply Gamma
vecd gamma = vecd(Gamma, Gamma, Gamma, Alphagamma);
f.Color = sign(f.Color) * pow(abs(f.Color), gamma);
}

1

-- This is called when the shader is created

-- img may be nil

function SetupShadeNode(group, req, img)
-- pass group, name, params string, and shader source
return ViewShadeNode(group, "GammaFuse", params, shader)

end

Summary
The SetupParams event is called every time the screen is redrawn. This allows the fuse to pass any

run-time parameters to the shader.

Parameters containing the current control values can be extracted from the passed Request. These
values can be used to set the shader’s run-time parameters in the passed ViewShadeNode with the
SetParam() function.

Usage

SetupParams(request, vsnode, image)

Fuse Reference

121

Arguments
request (Request object)

A Request object containing the current control values.

vsnode (ViewShadeNode object)
The ViewShadeNode object created and returned by SetupShader()

image (Image object)

The source image that will be given to the shader

Returns

The function should return true, if successful. Returning false will cause the shader chain to be rebuilt,
and FreeShader() then SetupShadeNode() will be called again. If SetupShadeNode() also returns nil,
the ScriptViewShader will be bypassed completely until the user re-enables it.

Example

-- This is called every display refresh
-- img may be nil

function SetupParams(req, vsnode, img)

-- retrieve control values
local gamma = InGamma:GetValue(req).Value

local alphagamma = InAlphaGamma:GetValue(req).Value

-- and setup the shader’s parameter values
vsnode:Set(l, gamma)

vsnode:Set(2, alphagamma)

return true

end

ViewlLut Example

Summary

FuRegisterClass() registers your plugin within Fusion. It takes a unique ID string, a plugin class type
enumerant, and a table of any extra attributes, like Ul name. For viewshaders, the class type must be

CT_ViewLUTPlugin.

Example
FuRegisterClass("GammaVSFuse", CT ViewLUTPlugin, { -- ID must be unique
REGS_Name = "Gamma ViewShader",
9]

Fuse Reference 122

A ViewShadeNode object encapsulates a GLSL shader program string, and a number of exposed, run-
time parameters. It should be created by the SetupShadeNode() function, which is called when the
shader chain is being built. The created ViewShadeNode is passed to SetupParams() every refresh of
the display so that any run-time parameters can be set.

Constructor

ViewShadeNode Constructs a new ViewShadeNode object. This requires four arguments:

group This is the ViewShadeNodeGroup passed to the
SetupShadeNode() function.

name This is an identifying name string.
params This is a string containing a list of parameter types and names,
one per line.

Types can include the following:

float
vec2
vec3
vecd
mat4
shader This is a string with the GLSL source for your shader program
Methods
Set Sets the value of numeric parameters. Can be given a single number, or
up to four values for a vector, or a Matrix4.
SetImage Used to pass an Image to the shader as a texture.
Example

function SetupShadeNode(group, req, img)
-- pass group, name, params string, and shader source
return ViewShadeNode(group, "GammaFuse", params, shader)

end

The GLSL shader string used to construct a ViewShadeNode object consists of a function called
ShadePixel(). This function takes a single argument, inout FuPixel f, which is used to return the view
pixel being processed.

Methods
ShadePixel Called to process each pixel.
EvalShadePixel This is called to fetch the color values and location of the current pixel.

Fuse Reference 123

Example

This is an example of a simple gamma shader program:

shader =

[l

void ShadePixel(inout FuPixel f)

{
// get source pixel
EvalShadePixel(f);
// apply Gamma
vec4d gamma = vecd4(Gamma, Gamma, Gamma, Alphagamma);
f.Color = sign(f.Color) * pow(abs(f.Color), gamma);

}

11

Summary

The ShadePixel function is written in GLSL and executed by the GPU for every drawn pixel. A FuPixel

is passed as the argument, and changes made to this FuPixel are passed on to the next shader in the

chain when it calls EvalShadePixel().
The FuPixel structure has four members, all of which are four-component vectors:
— vec4 Color // source pixel color
— vecd TexCoordO //image pixel coords [0..w-1, 0..h-1]
— vecd TexCoord1 //image normalised coords [0..1, 0..1]
— vecd TexCoord2 // dest screen coords [0..scrw, scrh..0] (O is top)
Usage
ShadePixel(inout FuPixel fpix)
fpix (FuPixel, required)

FuPixel struct used to receive changes to the current pixel

Returns

No explicit returns. This function modifies the FuPixel that is passed to it.
Example

void ShadePixel(inout FuPixel f)

{
// get source pixel
EvalShadePixel(f);
// apply Gamma
vec4d gamma = vec4(Gamma, Gamma, Gamma, Alphagamma);
f.Color = sign(f.Color) * pow(abs(f.Color), gamma);
}

Fuse Reference

124

MetaData

The Fuse Plugin will also process and handle Metadata.

Metadata is a set of string variables that are attached to an image and are passed alongside pixel
data through the comp. It is either loaded with an image from disk (the camera might have stored
metadata inside the files), created or modified in your comp by certain tools and saved to disk in Saver
tools (not every file format supports storing metadata though).

Viewing Metadata

To check what metadata is present in an image at a specific point inside your comp, you need to
enable the metadata subview using the SubV button that is present below each image viewer. An
overlay will list all the metadata (if any) that is present in the image in key/value pairs. Values can be
numbers or strings but also tables when variables are nested.

Afile's metadata is also displayed by the file requester when selecting a clip for a Loader tool.

Metadata and Fuses

This section describes what you need to know about metadata when writing Fuses.

The metadata is stored in a member variable of every Image object called .Metadata (it's nil if no
metadata is available) that can both be read and written. Using the LUA functions eyeon.writestring()
and eyeon.readstring(), you can place almost anything into the metadata that gets passed around.

To copy the metadata of your inputimage, it is recommended to use the IMG_Like attribute when
creating your output image, even if you then define a different size or channel configuration. This will
make sure the metadata of the input image is preserved.

All the metadata tools described above are Fuses so you can easily learn from their source code and
adapt them for your own use cases. The SparseColor Fuse is another example of how to read and
write metadata.

Supported File Types

Not every file type can store metadata. Traditionally, only cineon (.cin) and dpx files were used in
conjunction with metadata and they can only store a predefined set of attributes. OpenEXR (.exr) files
can be used to store any metadata you like and so can Fusion’s .raw files that are used for disk caches.
PNG files are able to store color space and gamut metadata. Other popular file formats like Tiff or Jpeg
don't support metadata (at least Fusion can't save it to these file types).

Fuse Reference

125

List of known Metadata

This is a list of some of the metadata attributes that you might encounter, either because they come

with certain image files or because they allow you to do nice things with them inside Fusion.

Metadata field name @ Source Description

Filename Loader This metadata is added by every Loader and
contains the full path, frame number and extension
of the currently loaded file.

FrameFilename Loader If the Loader points to an IFL file (text files, where
each line contains the name of a file to be loaded),
this variable will be added and contains the frame's
actual filename while the Filename field will contain
the (unchanging) path to the IFL file.

OriginalFilename dpx files Contains the "Filename" metadata of the source
image that was subsequently saved as the dpx file
you're currently viewing.

Project dpx files Contains the path and file name of the comp that
rendered the current dpx file.

TimeCode dpx files, mov exr Contains the current frame's time code.

For DPX this is usually generated by the camera and
subsequently carried along through the pipeline
unchanged.

For Quicktime movies it depends on the mov's
timecode track. You can use the SetTimeCode Fuse
to set this manually. Format is HH:MM:SS:FF

FrameRate mov Contains the Quicktime movie's frame rate.
SetTimeCode will also set this parameter but it may
not be written to the output file.

CreationTime dpx exr Contains the real world’s time when this frame was
recorded by the camera.

Creator

UserBits

FramePosition

Offset

Center Dpx exr Various attributes you may encounter in dpx files

OriginalSize

FilmFormat

FramelD

Slatelnfo

InputDevice dpx files and Fusion writes this to every dpx file.

InputSerial Saver tool

Fuse Reference

126

Metadata field name

Source

Description

screenWindowWidth
screenWindowCenter

exr files

These properties are part of the exr file standard
and contain the position of the image’s DoD

Gamma dpx & png files The image’s gamma. Written to PNG files by the
Saver tool but encountered in logarithmic dpx
files as well where it might denote the conversion
gamma (unconfirmed).

ColorSpace Gamut tool Contains the name of the output color space that
has been selected in Fusion’s Gamut tool.

WhitePointX Gamut tool These variables contain the coordinates of white

WhitePointY point and color primaries as converted by the

RedChromax Gamut tool sm;e thg p'reV|ou5|y me'ntloned

dch ColorSpace variable is just a user-friendly label

RedChromay (e.g. "sRGB") that contains little information for

GreenChromaX applications that deal with color science. These

GreenChromaY parameters can't be written to DPX files. Use

BlueChromaX

BlueChromaY

OpenEXR instead. PNG files are also able to save
this information.

Stereo.Method

Combiner tool

If Add Metadata is enabled in the Combiner tool,
Fusion will attach this attribute to the output image
to denote the stacking method of the current
image. Valid values are "hstack" and "vstack" for
horizontal and vertical stacking.

Stereo.Swap

manual

This property, if set to "true", will override the
viewer's stereo display option. It's useful if you need
to temporarily swap eyes somewhere inside your
comp but you don't want to toggle the "swap eyes"
option in the viewer by hand.

Stereo.Offset

manual

This "hidden" property needs to be set to an X

and Y offset in pixels (e.g. {10, 0}) and will shift

left and right eye when the viewer'’s stereo mode

is enabled. It's very useful to add this property if
your footage was shot with parallel cameras where
zero disparity would occur on the horizon and
everything would end up sticking out of the screen.
Often, a preliminary per-shot depth grading value is
supplied with the source footage to push the image
back. Instead of actually transforming your left

and right eye images and reverting this before the
Saver, use Stereo.Offset like a viewer LUT: you'll be
able to work on your raw footage while previewing
the desired depth grade in the viewers.

nuke/node_hash

Nuke (exr files)

This is a checksum of the script that generated the
image and is written to EXR files by Nuke.

Fuse Reference

127

Metadata Functions

The metadata is stored in a member variable for every Image called .Metadata (it's nil if no metadata
is available) that can both be read and written. Using the functions eyeon.writestring() and eyeon.

readstring() and the string functions of lua known and custom metadata can be processed with a fuse.

__[[__

This tool reads an image’s metadata and prints to the console

__]]__

FuRegisterClass("ReadMetaData", CT Tool, {
REGS_Name = "Read Metadata",
REGS Category = "Fuses\\Examples",
REGS_OpIconString = "RMeta',
REGS OpDescription = "Reads Metadata and prints to console",
REG_NoMotionBlurCtrls = true,
REG_NoBlendCtrls = true,
REG_OpNoMask = true,
REG_NoPreCalcProcess = true,
REG_SupportsDoD = true,
REG_Fuse_ NoJIT = true,
h

function Create()
InImage = self:AddInput("Input”, "Input", {
LINKID DataType = "Image",
LINK Main = 1,
})

OutImage = self:AddOutput('Output"”, "Output", {
LINKID DataType = "Image',
LINK_Main = 1,

})

end

function Process(req)
local img = InImage:GetValue(req)
local result =img

local meta

for name, val in pairs(result.Metadata) do
meta = result.Metadata[name]
print(name, meta)

end

OutImage:Set(req, result)

end

Fuse Reference

128

Summary

The eyeon.readstring will read a string from the metadata table and parse it into a table, separating

strings and values into separate table entries

Usage

eyeon.readstring(string val)

val (string, required)

Example

This example updates metadata fields

function Process(req)

local f name = InFieldName:GetValue(req).Value

local f value = InFieldValue:GetValue(req).Value

local img = InImage:GetValue(req)

local result = Image({IMG_Like = img,

img:Crop(result,

{h

if (f_name ~= "") then

IMG NoData = req:IsPreCalc()})

local newmetadata = result.Metadata or {}

if £ value ~= "" then

-- create subtables for dotted field names

local key

local subtable = newmetadata

for key in string.gmatch(f name,

subtable[key] =

"([sw_]+)%.") do

subtable[key] or {}

subtable = subtable[key]

end

-- get final key

f name = string.match(f_name,

"[Bw_1+$")

-- look for tables in f value

local tbl = string.match(f_value,

if tbl then

subtable[f name]
parse tables

else
subtable[f name]
end
else
newmetadata[f name] =
end

result.Metadata = newmetadata

end
OutImage:Set(req, result)

end

nil

"$s*Sb{}%s*")

eyeon.readstring(f value) --

f value

Fuse Reference

129

Summary

The eyeon.writestring will write strings and values as a string into a metadata table. This function
serializes a table into a string. It is also possible to create a table with the proper structure
from scratch.

Usage
eyeon.writestring(string val)

val (string, required)

DCTL Processing

DCTL Introduction

DCTL is an internal language that is processed on the GPU of the host computer and is abstracted
to compile to different GPU processes, like Metal on OSX, OpenCL for AMD GPUs and CUDA for
Nvidia GPUs.

The DCTL syntax is Clike with additional definitions. Users can define functions using DCTL code to
create a video effect and run it via Fuses in Resolve and Fusion. DCTL Kernels serve as a "pixel shader"
program, a process to generate one pixel of data at a time at each given frame'’s coordinates.

DCTL effects can be run as a Fuse Tool Plugin in a comp. These typically deal with a 2D texture image

of RGBA float values, or of alpha values only.

The basic programing concept is similar to the GLSL shader kernels with different syntax; first define
parameters to pass values from the fuse to the Kernel, second is to define the Kernel that does the
process on textures.

Kernels

DCTL Parameters

Parameters are defined in structure and contain integer, float, and array values. Any number and type
of parameters can be defined. The Parameter structure is a user-defined string, typically contained in

the raw string delimiters of double square brackets.

NameParams =[[...]]

Fuse Reference

130

Examples

GradientParams = []
float col[4];
int dstsize[2];

11

CircleParams = [[
float amp;
float damp;
float freq;
float phase;
float center[2];
int srcsize[2];
int compOrder;

1

DCTL Kernel Source Code
The Kernel is the image processing code that will be executed when called. The Kernel source code is a
user-defined string, and is typically contained in the raw string delimiters of double square brackets.

KernelSource =[[...Source Code...]]

Kernel functions that can be called from the fuse using a compute node are defined by the __
KERNEL__ prefix, with double underscores.

GradientSource = [[
__KERNEL__ void GradientKernel(__CONSTANTREF _ GradientParams *params,
__TEXTURE2D WRITE _ dst)

{
DEFINE_KERNEL ITERATORS_XY(X, V)
if (x < params->dstsize[0] && y < params->dstsize[l])
{
float2 pos = to_float2(x, y) / to_float2(params->dstsize[0] -
1, params->dstsize[l] - 1);
float4 col = to_float4 _v(params->col);
col *= to_ float4(pos.x, pos.y, 0.0f, 1.0f);
_tex2DVec4Write(dst, x, y, col); // image, x, y, float4 colour
}
}

Fuse Reference

131

__KERNEL_ _

Summary

This defines the entry to the Kernel code and name of the structure passing in parameters. The
pointer to the image texture is also defined.

Usage

__KERNEL__ void KernelName(__CONSTANTREF__ ParamsName *params, __TEXTURE2D__
TEXTURE2D_WRITE__ outputTexture)

—

inputTexture

KernelName

A user defined reference name of the Kernel to be called from the process.

ParamsName

The user-defined reference name of the parameter structure containing values into the kernel.

Qualifers

These qualifiers are used:
__CONSTANT__ qualifier to define fast constant memory.
__CONSTANTREF__ qualifier for a constant memory parameter structure passed to a function.

Textures

The textures to be passed to the kernel for processing. The type of texture is defined by the
following qualifiers

Qualifiers

__TEXTURE2D__ Read-only two-dimensional texture.

_ TEXTURE2D_WRITE__ 2D texture that the kernel can write into.

float fabs(float x)

Returns the absolute value of x

float powf(float x, float y)

Computes x raised to the power of y

float logf(float x)

Computes the value of the natural logarithm of x

float log2f(float x)

Computes the value of the logarithm of x to base 2

float _loglOf(float x)

Computes the value of the logarithm of x to base 10

float _expf(float x)

Computes e**x, the base-e exponential of x

float exp2f(float x)

Computes 2**x, the base-2 exponential of x

Fuse Reference

132

float

float

float

float

float

float

float

float

float

float

float

float

float

float

float

float

float

_expl0f(float x)

Computes 10**x, the base-10 exponential of x

_copysignf(float x, float y)

Returns x with its sign changed to y’s

_fmaxf(float x, float y)

Returns x or y, whichever is larger

_fminf(float x, float y)

Returns x or y, whichever is smaller

_clampf(float x, float min, float max)

Clamps x to be within the interval [min, max]

_saturatef(float x)

Clamps x to be within the interval [0.0f, 1.0f]

_sqgrtf(float x)

Computes the non-negative square root of x

_ceilf(float x)

Returns the smallest integral value greater than or equal to x

_floorf(float x)

Returns the largest integral value less than or equal to x

_truncf(float x)

Returns the integral value nearest to but no larger in magnitude
than x

_round(float x)

Returns the integral value nearest to x rounding, with half-way
cases rounded away from zero

_fmod(float x, float y)

Computes the floating-point remainder of x/y

_hypotf(float x, float y)

Computes the square root of the sum of squares of x and y

_cosf(float x)

Computes the cosine of x (measured in radians)

_sinf(float x)

Computes the sine of x (measured in radians)

_cospif(float x)

Computes the cosine of (x * pi) (measured in radians)

_sinpif(float x)

Computes the sine of (x * pi) (measured in radians)

Fuse Reference

133

float

float

float

float

float

float

float

float

float

float

float

float

float

float

float

_tanf(float x)

Computes the tangent of x (measured in radians)

_acosf(float x)

Computes the principal value of the arc cosine of x

_asinf(float x)

Computes the principal value of the arc sine of x

_atan2f(float y, float x)

Computes the principal value of the arc tangent of y/x, using the
signs of both arguments to determine the quadrant of the return value

_acoshf(float x)

Computes the principal value of the inverse hyperbolic cosine of x

_asinhf(float x)

Computes the principal value of the inverse hyperbolic sine of x

_atanhf(float x)

Computes the inverse hyperbolic tangent of x

_coshf(float x)

Computes the hyperbolic cosine of x

_sinhf(float x)

Computes the hyperbolic sine of x

_tanhf(float x)
Computes the hyperbolic tangent of x

_fdimf(float x, float y)

Returns the positive difference between x and y:x - y if x > vy,
+0 if x is less than or equal to y

_fmaf(float x, float y, float 2z)

Computes (x * y) + z as a single operation

_rsqgrtf(float x)

Computes the reciprocal of square root of x

_fdivide(float x, float y)

Returns x/y

_frecip(float x)

Returns 1/x

int isinf(float Xx)

Returns a non-zero value if and only if x is an infinite value

int isnan(float x)

Returns a non-zero value if and only if x is a NaN value

Fuse Reference

134

int signbit(float x)

Returns a non-zero value if and only if sign bit of x is set

T mix(T x, T y, float a)

T is used to indicate that the function can take float, float2,
float3, float4, as the type for the arguments.Returns: (x + (y - X)
* a). "a" must be a value in the range [0.0f, 1.0f]. If not, the
return values are undefined.

float frexp(float x, int exp)

Extracts mantissa and exponent from x. The mantissa m returned is
a float with magnitude in the interval [1/2, 1) or 0, and exp is
updated with integer exponent value, whereas x = m * 2"exp

float _ldexp(float x, int exp)

Returns (x * 2"exp)

NOTE that float values must have ‘f’ character at the end (e.g. 1.2f).

List of integer math functions available

int abs(int x)

Returns the absolute value of x

int min(int x, int y)

Returns x or y, whichever is smaller

int max(int x, int y)

Returns x or y, whichever is larger

Summary

This sets the x and y variables to the integer coordinates of the pixel currently being processed, and
will typically vary between (0,0) and the (width,height) of the output texture being written to. Note
that the GPU kernel may sometimes round the maximum values up for performance reasons, so you
should be careful not to attempt writing to (x,y) coordinates greater than (width-1,height-1) of your

output texture.

_tex2DVec4Write

Summary

Writes a four-channel RGBA color to a specific pixel in the output texture.

Usage
_tex2DVec4Write(tex, x, y, color);

Fuse Reference

135

tex Pointer to output texture

X location of pixel in the X axis

y location of pixel in the Y axis

color float4 vector of RGBA color.
_tex2DVec4(tex, x, y)

_tex2DVecN(tex, x, y, order)

Summary

_tex2DVec4(tex, x, y) and _tex2DVecN(tex, x, y, order) are the default image sampling functions.

They read a float4 vector of RGBA color values from a given texture tex at the specified x and y
coordinates, which are specified in pixels by default, i.e. between (0,0) and (width-1,height-1) inclusive.
The coordinate space, pixel filtering, and edge behavior can be changed using the AddSampler()

function with the default sampler name RowSampler.

_tex2DVecN() also takes an order parameter, which is a bitmask describing which channels to read.
Pass 15 to return all four RGBA channels, or pass 1 to read just the alpha value and return it in all four
RGBA channels.

_tex2DSamplerVec4(tex, sampler, x, y)

_tex2DSamplerVecN(tex, sampler, x, y, order)

Summary

_tex2DSamplerVec4(tex, sampler, X, y) and _tex2DSamplerVecN(tex, sampler, x, y, order) read a float4
vector of RGBA color values from a given texture tex at the specified x and y coordinates, using the
coordinate space, pixel filtering, and edge behavior modes given to an additional sampler, which is set
up with the AddSampler() function.

_tex2DSamplerVecN() also takes an order parameter, which is a bitmask describing which channels to
read. Pass 15 to return all four RGBA channels, or pass 1 to read just the alpha value and return it in all
four RGBA channels.

Summary

User defined functions can also be created and called.

Usage

__DEVICE__ float functionname(float value, float value.....) {return}

Example

__DEVICE_ _ float luma(float r, float g, float b) {
return ((0.2126 * r) + (0.7152 * g) + (0.0722 * b));

Fuse Reference

136

Process

With the DCTL Kernel and parameter structures defined, the fuse's processing function follows the
same lines as other Fuse tools. Images and Ul elements like sliders and on screen controls will be
requested for values, which are aggregated in the Request object given to the Process() function, and
can then be copied into a block of parameters to be passed to the GPU compute kernel for processing.

DVIPComputeNode

Summary

This creates a compute node for processing image pixels with a GPU compute kernel.The kernel is
compiled from a DCTL source string, and is given a block of parameter values to use.

Usage

nodename = DVIPComputeNode(req, "KernelSource", KernelSource, "NameParams", ParamBlock)

nodename Is a reference to the compute node.

req Is the Request object passed to the fuse’s Process() function.

KernelSource Is a reference to the defined kernel source code string.

NameParams Is the name of the parameter structure as used by the kernel source.

ParamBlock Is a reference to the block of parameter values that will be passed to the kernel.

Example

local node = DVIPComputeNode(req, "GradientKernel", GradientSource,
"GradientParams", GradientParams)

GetParamBlock
Summary

This gets a reference to the block of parameter values that will be passed as a structure to the

compute kernel.

Usage

parameterRef = node:GetParamBlock(ParamBlock)

parameterRef | Is a reference to the parameter block

node Is a reference to the kernel compute node

ParamBlock Is a reference to the parameter structure that will pass values to the kernel

Fuse Reference

137

Example

local params = node:GetParamBlock(CircleParams)

params.amp = amp

params.damp = damp

params.freq freq

params.phase = phase

SetParamBlock
Summary

This will pass the values from the parameter block to the kernel.

Usage

node:SetParamBlock(ParamBlock)

node Is a reference to the compute node

ParamBlock Is a reference to the block of parameter values to be given to the kernel

Example

local params = node:GetParamBlock(CircleParams)

params.center[0] = center.X
params.center[l] = center.Y
params.compOrder = 15

params.srcsize[0] = out.DataWindow:Width()

params.srcsize[l] out.DataWindow:Height()

node:SetParamBlock(params)

AddInput
Summary

This creates a texture from an Image, and sends it to the kernel for reading from. Each call to
AddInput() must have a matching argument in the DCTL kernel function of the form __TEXTURE2D__
name. A kernel may take multiple input textures, or none at all.

Usage

node:AddInput(name, image)

node Is a reference to the kernel compute node
name Is a string that identifies the texture passed to the kernel
image Is a reference to an Image object

Fuse Reference

138

Example

node:AddInput("src", img)

AddOutput
Summary

This attaches an empty texture to an Image, and passes it to the kernel to be written to. A single call
to AddOutput() is required, and it must have a matching argument in the DCTL kernel function of the
form __TEXTURE2D_WRITE__ name.

Usage

node:AddInput(name, image)

node Is a reference to the kernel compute node
name [s a string that identifies the texture passed to the kernel
image Is a reference to an Image object

Example

node:AddInput("src", img)

AddSampler
Summary

This tells the GPU how to find and read pixels from an image texture. There are a number of filter
methods, edge condition treatments and coordinate modes.

Usage
AddSampler(“Sampler”, filterMode, addressMode, normCoordsMode)

RowSampler is the default image sampler. It has default settings of :
TEX_FILTER_MODE_POINT,
TEX_ADDRESS_MODE_CLAMP,
TEX_NORMALIZED_COORDS_FALSE

ilterMode _ _ _ nearest samplin
iIterMod TEX_FILTER_MODE_POINT (pling)
TEX_FILTER_MODE_LINEAR (bilinear sampling)

addressMode TEX_ADDRESS_MODE_BORDER (black edges)
TEX_ADDRESS_MODE_CLAMP (duplicate edges)
TEX_ADDRESS_MODE_MIRROR (mirrored edges)
TEX_ADDRESS_MODE_WRAP (wrapped edges)

normCoordsMode TEX_NORMALIZED_COORDS_FALSE (pixel coords, 0..width-1 and 0..height-1)
TEX_NORMALIZED_COORDS_TRUE (normalised coords, 0..1)

TEX_NORMALIZED_COORDS_AUTO (normalised coords for linear-sampled
textures, otherwise pixel coords)

Fuse Reference

139

Example

node:AddSampler("RowSampler", TEX_ FILTER_MODE_LINEAR,
TEX_ ADDRESS_ MODE_CLAMP, TEX NORMALIZED_ COORDS_TRUE)

RunSession
Summary

Once the compute node has been created, image textures created, and all values set in the parameter
block, RunSession will execute the defined kernel on the GPU. A boolean value is returned to indicate
the kernel has been successfully queued, or if a failure has occurred at some stage (such as a kernel
compilation error). Any error conditions will be logged to the Console.

Usage

node:RunSession(req)

node Is a reference to the compute node
req Is the Request object passed to the kernel process.
Examples

node:AddInput("src", img)
node:AddOutput("dst", out)

success = node:RunSession(req)

-— Registry declaration

FuRegisterClass("GPUSampleFuse", CT_SourceTool, {

REGS_Category = "Fuses\\Examples",
REGS_OpIconString = "GFu",
REGS_OpDescription = "GPU Sample Fuse",

REG_NoObjMatCtrls = true,
REG_NoMotionBlurCtrls = true,

REG_Source_GlobalCtrls = true,
REG_Source_SizeCtrls = true,
REG_Source_AspectCtrls = true,
REG_Source_DepthCtrls = true,
b

Fuse Reference

140

-- Description of kernel parameters

GradientParams = []
float col[4];
int dstsize[2];

11

CircleParams = [[
float amp;
float damp;
float freq;
float phase;
float center[2];
int srcsize[2];
int compOrder;

11

—- source of kernel

GradientSource = [[
__KERNEL__ void GradientKernel(__CONSTANTREF _ GradientParams *params,
__TEXTURE2D WRITE _ dst)

{
DEFINE_ KERNEL ITERATORS_ XY(X, V)
if (x < params->dstsize[0] && y < params->dstsize[l])
{
float2 pos = to_float2(x, y) / to_float2(params->dstsize[0] - 1,
params->dstsize[l] - 1);
float4 col = to_float4 v(params->col);
col *= to_float4(pos.x, pos.y, 0.0f, 1.0f);
_tex2DVec4Write(dst, x, y, col); // image, x, y, float4 color
}
}
11
CircleSource = [[

#define length(a,b) _sqgrtf(((a).x-(b).x)*((a).x-(b).x) + ((a).y-(b).y)*((a).y-
(b).y))

__KERNEL__ void CircleKernel(__CONSTANTREF _
__TEXTURE2D _ src, __ TEXTURE2D WRITE _ dst)

CircleParams *params,

Fuse Reference

141

DEFINE_ KERNEL_ ITERATORS XY(X, Yy)
if (x < params->srcsize[0] && y < params->srcsize[l])

{

float2 pos = to float2(x, y) / to_float2(params->srcsize[0] - 1,

params->srcsize[l] - 1);

float2 center = to_float2 v(params->center);

float d = _length(pos, center);
float vl = fmax(params->amp - params->damp * d, 0.0f);
vl = 1.0f + sin(d * params->freq + params->phase) * vl;

float2 frompos = vl * (pos - center) + center;

// source image, X & y coords, component mask

float4 col = tex2DVecN(src, frompos.x, frompos.y,
>compOrder); tex2DVec4Write(dst, x, y, col);

function Create()

InCenter = self:AddInput('Center", "Center", {

LINKID DataType = "Point",

INPID InputControl = "OffsetControl",
INPID PreviewControl = "CrosshairControl",
h

InAmplitude = self:AddInput("Amplitude”, "Amplitude", {

LINKID DataType = "Number",

INPID InputControl = "SliderControl",
INP_Default = 0.5,

9]

InDamping = self:AddInput('Damping", "Damping", {

LINKID DataType = "Number",

INPID InputControl = "SliderControl",
INP_Default = 0.0,

b

InFrequency = self:AddInput("Frequency", "Frequency", {
LINKID DataType = "Number",
INPID InputControl = "SliderControl",
INP_Default = 20,
INP_MaxScale = 100.0,
h

params-—

Fuse Reference

142

InPhase = self:AddInput('Phase", "Phase", {
LINKID DataType = "Number",
INPID InputControl = "ScrewControl",
INP_Default = 0.0,
INP_MaxScale = 10.0,
h

-- OutImage is automatically created for us, as we're a CT SourceTool

end

function Process(req)
local center = InCenter:GetValue(req)
local amp = InAmplitude:GetValue(req).Value
local damp = InDamping:GetValue(req).Value
local freq = InFrequency:GetValue(req).Value

local phase = InPhase:GetValue(req).Value

local realwidth = Width;
local realheight = Height;

-- We’ll handle proxy ourselves
Width = wWidth / Scale

Height = Height / Scale

Scale =1

local imgattrs = {
IMG_Document = self.Comp,
IMG_Width = width,
IMG_Height = Height,
IMG_XScale = XAspect,
IMG_YScale = YAspect,
IMAT OriginalWidth = realwidth,
IMAT OriginalHeight = realheight,
IMG_Quality = not req:IsQuick(),
IMG_ MotionBlurQuality = not req:IsNoMotionBlur(),
}

if not req:IsStampOnly() then
imgattrs.IMG_ProxyScale = 1

end

if SourceDepth ~= 0 then
imgattrs.IMG_Depth = SourceDepth

end

Fuse Reference 143

local img = Image(imgattrs)

local out
local success = false

if img then

local node = DVIPComputeNode(req,

GradientSource,

if node then

"GradientKernel",

"GradientParams", GradientParams)

-- create image

local params

params.col[0]
params.col[1]
params.col[2]

params.col[3]

= node:GetParamBlock(GradientParams)

1.0
1.0
1.0
1.0

params.dstsize[0] = img.DataWindow:Width()

params.dstsize[l] = img.DataWindow:Height()

node:SetParamBlock(params)

node:AddOutput("dst"”, img)

success = node:RunSession(req)

end

-- and warp it

if success then

out = Image({IMG_Like = img })

local node =
CircleSource, “CircleParams’,

if node then

DVIPComputeNode(req,
CircleParams)

"CircleKernel",

-- create image

local params = node:GetParamBlock(CircleParams)
params.amp = amp

params.damp = damp

params.freq = freq

params.phase = phase

params.center[0] = center.X

params.center[l] = center.Y

params.compOrder = 15

params.srcsize[0] = out.DataWindow:Width()
params.srcsize[l] = out.DataWindow:Height()

Fuse Reference

144

node:SetParamBlock(params)

node:AddSampler("RowSampler", TEX_ FILTER_MODE_
LINEAR, TEX ADDRESS MODE CLAMP, TEX NORMALIZED _
COORDS_TRUE)

node:AddInput("src", img)
node:AddOutput("dst", out)

success = node:RunSession(req)
else
out = nil
end
end

end

OutImage:Set(req, out)

end

Fuse Reference 145

	Contents
	Fuse Plugin Guide
	About Fuse Plugins
	Installation
	Resolve
	Fusion

	Overview Guide
	About the Lua Language
	Types of Fuse Plugins
	Image Basics
	Images
	Color
	Channels
	Canvas Color
	Image Domain
	Metadata

	Fuse Plugin Programing
	Editing and Loading
	Setting Code Dev Editor
	Naming Conventions
	Variables
	Console - Print and Debug
	Other Programing Notes

	Example 1 – Overview of a Fuse
	FuRegisterClass Function
	UI Controls - Create Function
	Process Event Function

	Example 2 – UI Controls
	Sliders
	Buttons, Check Boxes and Lists
	On Screen
	Color Controls
	Gradient Color
	Organize, Tabs, Nests
	Image Inputs
	Notify Change

	Example 3 – Internal Image Processing Functions
	Color Matrix
	Color Functions
	Color Space
	Clear and Fill Image
	Channel Operations
	Channel Booleans
	Transform
	Crop
	Resize
	Merge
	OMerge OXMerge
	Blur Glow

	Example 4 – Multi Pixel Processing
	Creating Pixel Functions
	Process

	Example 5 – Shapes, Lines, Text
	Example 6 – Text and Strings
	UI Create
	Process
	Function Creation - Text Rendering

	Example 7 – Sampling
	Process Scatter
	Process Sample

	Fuse Reference
	Creation
	FuRegisterClass()
	Create
	Process
	NotifyChanged
	OnAddToFlow
	Input

	UI
	Add Controls - AddInput
	ButtonControl
	CheckboxControl
	ColorControl
	ComboControl
	FileControl
	FontFileControl
	GradientControl
	LabelControl
	MultiButtonControl
	OffsetControl
	RangeControl
	Thumbwheel ScrewControl
	SliderControl
	TextEditControl
	OnScreen UI Widgets
	Output

	Process
	Image Processing Function
	BlendOf
	Blur
	ChannelOpOf
	CopyOf
	CSConvert
	ErodeDilate
	Fill
	Gamma
	Gain
	GetCanvasColor
	GetPixel
	Image
	Merge
	MergeOf
	MultiProcessPixels
	OMerge
	OXMerge
	Resize
	RecycleSAT
	SamplePixelB
	SamplePixelD
	SamplePixelW
	SampleAreaB
	SampleAreaD
	SampleAreaW
	Saturate
	SetCanvasColor
	SetPixel
	Transform
	UseSAT

	Request
	Domain of Definition

	Pixel
	ColorMatrixFull
	Using the ColorMatrix

	Drawing, Text, Shapes
	Shapes Creation
	Shape
	AddRectangle
	MoveTo
	LineTo
	BezierTo
	ConicTo
	Close

	Text Shape
	GetCharacterShape
	TextStyleFont
	TextStyleFontMetrics
	CharacterWidth
	CharacterKerning
	OutlineOfShape

	ImageChannel
	Styles
	FillStyle
	SetFillStyle
	ShapeFill
	PutToImage

	ChannelStyle
	Color
	BlurType
	SoftnessX SoftnessY
	SoftnessGlow
	SoftnessBlend

	Shape Transforms
	Matrix4
	Matrix Operations
	Identity
	RotX RotY RotZ
	RotAxis
	Rotate
	Move
	Scale
	Shear
	Project
	Perspective
	TransformOfShape

	View LUT Plugin
	ViewLut Creation
	FuRegisterClass()

	ViewLut UI
	Create()

	ViewLut Process
	SetupShadeNode()
	SetupParams

	ViewLut Example
	FuRegisterClass()
	ViewShadeNode
	The Shader String
	ShadePixel

	MetaData
	Viewing Metadata
	Metadata and Fuses
	Supported File Types
	List of known Metadata
	Metadata Functions
	Readstring
	Writestring

	DCTL Processing
	DCTL Introduction
	Kernels
	Math Functions
	define_kernel_iterators_xy(x, y)
	User Defined Functions

	Process
	Process Introduction

